
Mentoring Operating System (MentOS)
Exercise 1 - Deadlock prevention

Created by
Mirco De Marchi
Enrico Fraccaroli

enrico.fraccaroli@gmail.com

Mentoring Operating System (MentOS) Exercise 1 - Deadlock prevention 1 / 24

mailto:enrico.fraccaroli@gmail.com


Table of Contents

1. Preparation

2. Deadlock: theoretical aspects
2.1. Definitions
2.2. Banker’s Algorithm

3. MentOS: Deadlock Prevention
3.1. How to
3.2. Library arr_math
3.3. Exercise

Mentoring Operating System (MentOS) Exercise 1 - Deadlock prevention 2 / 24



Preparation

Mentoring Operating System (MentOS) Exercise 1 - Deadlock prevention 3 / 24



Preparation
Switch to Exercise branch

1. Save your work!!!
I e.g., mentos/src/process/scheduler_algorithm.c

2. git reset –hard

3. git pull

4. git checkout –track
origin/feature/Feature-DeadlockExercise

Mentoring Operating System (MentOS) Exercise 1 - Deadlock prevention 4 / 24



Deadlock: theoretical aspects

Mentoring Operating System (MentOS) Exercise 1 - Deadlock prevention 5 / 24



Deadlock: theoretical aspects

Definitions

Mentoring Operating System (MentOS) Exercise 1 - Deadlock prevention 6 / 24



Deadlock

Deadlock
State of a concurrent system with shared resources between tasks,
in which at least a single task is waiting for a resource acquisition
that can be released by another task without resolution.
If you want to avoid deadlock you have to prevent that at least
one of the following conditions hold:
I Mutual exclusion;
I Hold and wait;
I No preemption;
I Circular waiting;

Mentoring Operating System (MentOS) Exercise 1 - Deadlock prevention 7 / 24



Safe state

Safe state
The system state is safe if you can find a sequence of resource
allocations that satisfy the tasks resource requirements, otherwise
is unsafe.
!!! You need to know tasks resource requirements. Not so simple
to do.

Methodologies that use the concept of unsafe state:
I Dynamic Prevention: check each allocation request if leads to

an unsafe state;
I Detection: only detect when happens;

For example: Banker’s Algorithm.

Mentoring Operating System (MentOS) Exercise 1 - Deadlock prevention 8 / 24



Banker’s Algorithm and alternatives

Banker’s Algorithm main idea: I will satisfy your request only if I
am sure to satisfy the requests that others can ask.
Not so generous because he considers the upper bound of the
resource requests ⇒ Drawback: tasks starvation.

Alternative methodologies:
I Static prevention: design constraints to falsify deadlock

conditions;
I Detect and Recovery: rollback or, at worst, system restart;
I Not handled: programmers have to write good code (e.g.

Linux);

Mentoring Operating System (MentOS) Exercise 1 - Deadlock prevention 9 / 24



Deadlock: theoretical aspects

Banker’s Algorithm

Mentoring Operating System (MentOS) Exercise 1 - Deadlock prevention 10 / 24



Banker’s Algorithm: notations

I n: Current number of tasks in the system.
I m: Current number of resource types in the system.
I req_task: Process that perform the resource request.
I req_vec[m]: Resource instances requested by req_task.
I available[m]: Number of resource instances available for each

resource type.
I max[n][m]: Maximum number of resources instances that

each task may require;
I alloc[n][m]: Current resource instances allocation for each

task.
I need[n][m]: Current resources instances need for each task.

need[i][j] = max[i][j] - alloc[i][j].

Mentoring Operating System (MentOS) Exercise 1 - Deadlock prevention 11 / 24



Banker’s Algorithm: resource request
Require: req_task, req_vec[m], available[m], max[n][m], alloc[n][n],

need[n][m]
1: if req_vec > need[req_task] then
2: error()
3: end if
4: if req_vec > available then
5: wait()
6: end if
7: available = available - req_vec
8: alloc[req_task] = alloc[req_task] + req_vec
9: need[req_task] = need[req_task] - req_vec

10: if !safe_state() then
11: available = available + req_vec
12: alloc[req_task] = alloc[req_task] - req_vec
13: need[req_task] = need[req_task] + req_vec
14: end if
Algorithm 1: Resource request performed by a requesting task

Mentoring Operating System (MentOS) Exercise 1 - Deadlock prevention 12 / 24



Banker’s Algorithm: check state safe
Require: available[m], max[n][m], alloc[n][m], need[n][m]

1: work[m] = available; finish[n] = (0,...,0)
2: while finish[] != (1,...,1) do
3: for i=0 to n do
4: if !finish[i] and work >= need[i] then
5: break
6: end if
7: end for
8: if i == N then
9: return false // UNSAFE

10: else
11: work = work + alloc[i]
12: finish[i] = 1
13: end if
14: end while
15: return true // SAFE

Algorithm 2: Check if the allocation leads an unsafe state
Mentoring Operating System (MentOS) Exercise 1 - Deadlock prevention 13 / 24



MentOS: Deadlock Prevention

Mentoring Operating System (MentOS) Exercise 1 - Deadlock prevention 14 / 24



MentOS: Deadlock Prevention

How to

Mentoring Operating System (MentOS) Exercise 1 - Deadlock prevention 15 / 24



How to do in MentOS

Deadlock prevention is not easy to perform, because we need to
know in advance information about tasks execution. In particular,
we need to fill the available, max, alloc, need matrices.

What to do to get the matrices?
I available: need for a list of created resources;
I max: need to know for each task which are the resources that

they are interested for.
I alloc: need to know which process a resource has been

assigned.
I need: need for a library to manage arrays (also for the

algorithm itself).

Mentoring Operating System (MentOS) Exercise 1 - Deadlock prevention 16 / 24



How to do in MentOS

Assumptions made:
I Each semaphore created belongs to a existing resource.
I Each resource can be used by the process that created it and

by the child processes.
What has been implemented:
I Definition of resource_t with task reference that own it.
I Creation of global created resources list.
I List of resources that tasks are interested for, in

task_struct.
I Copy of this list in child task_struct during syscall fork.
I Resource creation during semaphore creation in kernel-side

syscall.
I Implementation of arr_math library.

Mentoring Operating System (MentOS) Exercise 1 - Deadlock prevention 17 / 24



Resource definition and task_struct improvements

typedef struct resource {
/// Resource index. The resources indexes has to be continuous: 0, 1, ... M.
size_t rid;
/// List head for resources list.
list_head resources_list;
/// Number of instances of this resource. For now, always 1.
size_t n_instances;
/// If the resource has been assigned, it points to the task assigned,
/// otherwise NULL.
task_struct *assigned_task;
/// Number of instances assigned to assigned task.
size_t assigned_instances;

} resource_t;

typedef struct task_struct {
...

/// Array of resource pointers that task need for.
struct resource *resources[TASK_RESOURCE_MAX_AMOUNT];

...
} task_struct;

Mentoring Operating System (MentOS) Exercise 1 - Deadlock prevention 18 / 24



MentOS: Deadlock Prevention

Library arr_math

Mentoring Operating System (MentOS) Exercise 1 - Deadlock prevention 19 / 24



Library arr_math 1

The implementation of Banker’s Algorithm needs to manage
matrices and arrays. You can find arr_math definition in
mentos/inc/experimental/math/arr_math.h.
The following is a summary of the definitions:
I uint32_t *all(uint32_t *dst, uint32_t value, size_t

length);
Initialize the destination array with a value.

I uint32_t *arr_sub(uint32_t *left, const uint32_t
*right, size_t length);
Array element-wise subtraction, saved in left pointer.

I uint32_t *arr_add(uint32_t *left, const uint32_t
*right, size_t length);
Array element-wise addition, saved in left pointer.

Mentoring Operating System (MentOS) Exercise 1 - Deadlock prevention 20 / 24



Library arr_math 2

I bool_t arr_g_any(const uint32_t *left, const uint32_t
*right, size_t length);
Check that at least one array element is greater than the
respective other. E.g. [1, 1, 6]g_any [1, 2, 3] = true

I bool_t arr_g(const uint32_t *left, const uint32_t
*right, size_t length);
Check that all array elements are greater than the respective
other. E.g. [2, 3, 4]g_all [1, 2, 3] = true

I arr_ge_any: greater or equals at least one.
I arr_ge: greater or equals all elements.
I arr_l_any, arr_le_any: less (and less or equals) at least

one.
I arr_l, arr_le: less and less or equals all elements.
I arr_e, arr_ne: equals and not equals all elements.

Mentoring Operating System (MentOS) Exercise 1 - Deadlock prevention 21 / 24



MentOS: Deadlock Prevention

Exercise

Mentoring Operating System (MentOS) Exercise 1 - Deadlock prevention 22 / 24



MentOS setup

Requirement: semaphore syscalls and scheduler algorithm.

1. cd <mentos-main-dir>

2. git checkout –track
origin/feature/Feature-DeadlockExercise

3. git pull

4. Prepare MentOS with semaphore syscalls implementation and
at least one scheduler algorithm.
I mentos/src/process/scheduler_algorithm.c
I src/experimental/smart_sem_user.c

Mentoring Operating System (MentOS) Exercise 1 - Deadlock prevention 23 / 24



Deadlock Prevention in MentOS

Implement Banker’s Algorithm in MentOS starting from the
template file given in
mentos/src/experimental/deadlock_prevention.c.

Check for the results:
I Build project

1. cd <mentos-main-dir>
2. mkdir build && cd build
3. cmake -DENABLE_DEADLOCK_PREVENTION=ON ..
4. Build: make
5. Run: make qemu

I Check in debug console for deadlock prevention deterministic
simulation.

I Try the shell command line deadlock [-i <iterations>]
to test deadlock prevention in real tasks.

See you in laboratory for more info about.
Mentoring Operating System (MentOS) Exercise 1 - Deadlock prevention 24 / 24


	Preparation
	Deadlock: theoretical aspects
	Definitions
	Banker's Algorithm

	MentOS: Deadlock Prevention
	How to
	Library <arr_math>
	Exercise


