
Mentoring Operating System (MentOS)
Signals

Created by
Filippo Ziche, Daniele Nicoletti

Enrico Fraccaroli
enrico.fraccaroli@gmail.com

Mentoring Operating System (MentOS) Signals 1 / 28

mailto:enrico.fraccaroli@gmail.com

Table of Contents

1. Signals
1.1. Signals transmission
1.2. Actions Performed upon Delivering a Signal
1.3. Data Structures Associated with Signals
1.4. Generating a Signal
1.5. Delivering a Signal

Mentoring Operating System (MentOS) Signals 2 / 28

Signals

Mentoring Operating System (MentOS) Signals 3 / 28

Signals

Signals transmission

Mentoring Operating System (MentOS) Signals 4 / 28

Signals transmission

The kernel distinguishes two different phases related to signal
transmission:
I Signal generation The kernel updates a data structure of the

destination process to represent that a new signal has been
sent.

I Signal delivery The kernel forces the destination process to
react to the signal by changing its execution state, by starting
the execution of a specified signal handler, or both.

Signals that have been generated but not yet delivered are called
pending signals. At any time, only one pending signal of a given
type may exist for a process; additional pending signals of the same
type to the same process are not queued but simply discarded.

Mentoring Operating System (MentOS) Signals 5 / 28

Signals transmission
Although the notion of signals is intuitive, the kernel
implementation is rather complex. The kernel must:
I Remember which signals are blocked by each process.
I When switching from Kernel Mode to User Mode, check

whether a signal for a process has arrived. This happens at
almost every timer interrupt (roughly every millisecond).

I Determine whether the signal can be ignored. This happens
when all of the following conditions are fulfilled:
I The signal is not blocked by the destination process.
I The signal is being ignored by the destination process (either

because the process explicitly ignored it or because the process
did not change the default action of the signal and that action
is “ignore”).

I Handle the signal, which may require switching the process to
a handler function at any point during its execution and
restoring the original execution context after the function
returns.

Mentoring Operating System (MentOS) Signals 6 / 28

Signals

Actions Performed upon Delivering a Signal

Mentoring Operating System (MentOS) Signals 7 / 28

Actions Performed upon Delivering a Signal

There are three ways in which a process can respond to a signal:
I Explicitly ignore the signal.
I Execute the default action associated with the signal. This

action, which is predefined by the kernel, depends on the
signal type and may be any one of the following:
I Terminate The process is terminated (killed).
I Dump The process is terminated (killed) and a core file

containing its execution context is created, if possible; this file
may be used for debug purposes.

I Ignore The signal is ignored.
I Stop The process is stopped—i.e., put in the

TASK_STOPPED state
I Continue If the process was stopped (TASK_STOPPED), it

is put into the TASK_RUNNING state
I Catch the signal by invoking a corresponding signal-handler

function.

Mentoring Operating System (MentOS) Signals 8 / 28

Signals

Data Structures Associated with Signals

Mentoring Operating System (MentOS) Signals 9 / 28

Data Structures Associated with Signals

Figure: The most significant data structures related to signal handling

Mentoring Operating System (MentOS) Signals 10 / 28

Data Structures Associated with Signals
The struct sigpending pending contains a list of sigqueue_t
structs rappresenting all the private pending signals of the process
and the bitfield signal that indicates which signals types are
currently inside the list.
The struct sighand_t sighand contains all the process’s signal
handler descriptor, one for each type of signal.
The sigaction_t struct describes how each signal must be
handled, and it contains the following fields:
I sa_handler This field specifies the type of action to be

performed; its value can be a pointer to the signal handler,
SIG_DFL (that is, the value 0) to specify that the default
action is performed, or SIG_IGN (that is, the value 1) to
specify that the signal is ignored

I sa_flags This set of flags specifies how the signal must be
handled

I sa_mask This sigset_t variable specifies the signals to be
masked when running the signal handlerMentoring Operating System (MentOS) Signals 11 / 28

Data Structures Associated with Signals

The sigqueue_t struct rappresents an entry of the signal queue
and it contains the following fields:
I flags Flags of the sigqueue data structure
I info Describes the event that raised the signal using the

siginfo_t struct, 128-byte data structure that stores
information about an occurrence of a specific signal. It
contains the following important fields:
I si_signo The signal number
I si_errno The error code of the instruction that caused the

signal to be raised, or 0 if there was no error
I si_code A code identifying who raised the signal
I sigval_t A union storing information depending on the type of

signal.

Mentoring Operating System (MentOS) Signals 12 / 28

Signals

Generating a Signal

Mentoring Operating System (MentOS) Signals 13 / 28

Generating a Signal
The most important syscall for generating signals is kill, it ends
up invoking the __send_signal function which inserts a new item
in the private pending signal queue of the desired process
descriptor. This function does not directly perform the second
phase of delivering the signal.
static int __send_signal(int sig, siginfo_t* info, struct task_struct* t);

Before adding the signal the handle_stop_signal function is
invoked to check for some types of signals that might nullify other
pending signal in the process. For example if the signal is a stop
signal then the SIGCONT signal is removed if present.
if (sig == SIGSTOP || sig == SIGTSTP || sig == SIGTTIN || sig == SIGTTOU) {

sigset_t mask;
sigemptyset(&mask);
sigaddset(&mask, SIGCONT);

__rm_from_queue(&mask, &p->pending);
}

Mentoring Operating System (MentOS) Signals 14 / 28

Generating a Signal

In the same way if the signal is SIGCONT the SIGSTOP, SIGTSTP,
SIGTTIN, and SIGTTOU signals are removed from the private
pending queue and the process is immediately awakened.
if (sig == SIGCONT) {

sigset_t mask;
sigemptyset(&mask);

sigaddset(&mask, SIGSTOP);
sigaddset(&mask, SIGTSTP);
sigaddset(&mask, SIGTTIN);
sigaddset(&mask, SIGTTOU);

__rm_from_queue(&mask, &p->pending);

struct list_head *it, *tmp;
list_for_each_safe (it, tmp, &stopped_queue.task_list) {

// Awakens targeted process...
}

}

Mentoring Operating System (MentOS) Signals 15 / 28

Generating a Signal

At the beginning the __send_signal function checks if the signal is
not ignored by the process, that is the sighandler for this specific
signal is not set to SIG_IGN

if (__sig_is_ignored(t, sig)) {
pr_debug("Trying to send signal (%2d)‘%s‘ to task (%2d)‘%s‘: ignored.\n",

sig, strsignal(sig), t->pid, t->name);
__unlock_task_sighand(t);
return 0;

}

Then we checks if the process is in a valid state
if ((t->state == EXIT_ZOMBIE) || (t->state == EXIT_DEAD)) {

pr_debug("Trying to send signal (%2d)‘%s‘ to task (%2d)‘%s‘: zombie or dead.\n",
sig, strsignal(sig), t->pid, t->name);

__unlock_task_sighand(t);
return -EINVAL;

}

Mentoring Operating System (MentOS) Signals 16 / 28

Generating a Signal

In the end a new sigqueue_t struct is allocated and appended to
the private pending queue, the signal bitfield is also updated with
the newly inserted signal type using the sigaddset function.
sigqueue_t *q = __sigqueue_alloc(t, sig, GFP_KERNEL);
if (q == NULL) {

__unlock_task_sighand(t);
return -EAGAIN;

}

list_head_add_tail(&q->list, &t->pending.list);
if (info != SEND_SIG_NOINFO)

memcpy(&q->info, info, sizeof(siginfo_t));

// Set that there is a signal pending.
sigaddset(&t->pending.signal, sig);
pr_debug("Added pending signal (%2d)‘%s‘ to task (%2d)‘%s‘, pending ‘%d, %d‘.\n",

sig, strsignal(sig), t->pid, t->name, t->pending.signal.sig[0],
t->pending.signal.sig[1]);

__unlock_task_sighand(t);
return 0;

Mentoring Operating System (MentOS) Signals 17 / 28

Signals

Delivering a Signal

Mentoring Operating System (MentOS) Signals 18 / 28

Delivering a Signal

To handle the nonblocked pending signals, the kernel invokes the
do_signal function.
int do_signal(struct pt_regs *f);

The heart of this function consists of a loop that repeatedly
invokes the __dequeue_signal function until no nonblocked
pending signals are left in the private pending signal queues.
while (!list_head_empty(¤t->pending.list)) {

signr = exit_code = __dequeue_signal(¤t->pending, ¤t->blocked, &info);

...
}

The __dequeue_signal considers all signals in the private pending
signal queue, starting from the lowest-numbered signal. It updates
the data structures to indicate that the signal is no longer pending
and returns its number.

Mentoring Operating System (MentOS) Signals 19 / 28

Delivering a Signal

Inside the dequeue loop we obtain the correspondent signal action
and if it is ignored by the process we continue with a new loop
execution and a new signal.
sigaction_t *ka = ¤t->sighand.action[signr - 1];

if (ka->sa_handler == SIG_IGN) {
continue;

}

The only exception comes when the receiving process is init, in
which case the signal is discarded.
if (current->pid == 1)

continue;

Mentoring Operating System (MentOS) Signals 20 / 28

Delivering a Signal

If the ka->sa_handler is equal to SIG_DFL then do_signal must
perform the default action of the signal.
if (ka->sa_handler == SIG_DFL) {

switch (signr) {
...

}
}

The default action depends on the signal number and is
hardcoded. Signals like SIGCONT, SIGCHLD, SIGWINCH or SIGURG are
simply ignored.
case SIGCONT:
case SIGCHLD:
case SIGURG:
case SIGWINCH:

continue;

Mentoring Operating System (MentOS) Signals 21 / 28

Delivering a Signal
The signals whose default action is dump may create a core file in
the process working directory; this file lists the complete contents
of the process’s address space and CPU registers.
case SIGFPE:
case SIGSEGV:
case SIGBUS:
case SIGSYS:
case SIGXCPU:
case SIGXFSZ:

if (do_coredump(signr, f))
exit_code |= 0x80;

The signals whose default action is stop may stop the current
process. To do this, do_signal sets the state of current to
TASK_STOPPED and then invokes the schedule function.
case SIGTSTP:
case SIGTTIN:
case SIGTTOU:

if (is_orphaned_pgrp(current->gid))
continue;

case SIGSTOP:
__do_signal_stop(current, f, signr);

Mentoring Operating System (MentOS) Signals 22 / 28

Delivering a Signal

The difference between SIGSTOP and the other signals is subtle:
SIGSTOP always stops the process, while the other signals stop the
process only if it is not in an orphaned process group. The
POSIX standard specifies that a process group is not orphaned as
long as there is a process in the group that has a parent in a
different process group but in the same session.

The default action of the remaining signals is terminate which
consists of simply killing the process.
case SIGQUIT:
case SIGILL:
case SIGTRAP:
case SIGABRT:

sys_exit(3);

Mentoring Operating System (MentOS) Signals 23 / 28

Delivering a Signal

If a handler has been established for the signal, the do_signal
function must enforce its execution. It does this by invoking
handle_signal.

Figure: Flow of code in delivering a signal to a process

Mentoring Operating System (MentOS) Signals 24 / 28

Delivering a Signal

Executing a signal handler is a rather complex task because of the
need to juggle stacks carefully while switching between User Mode
and Kernel Mode.

Signal handlers are functions defined by User Mode processes and
included in the User Mode code segment. The handle_signal
function runs in Kernel Mode while signal handlers run in User
Mode; this means that the current process must first execute the
signal handler in User Mode before being allowed to resume its
“normal” execution.

Moreover, when the kernel attempts to resume the normal
execution of the process, the Kernel Mode stack no longer contains
the hardware context of the interrupted program, because the
Kernel Mode stack is emptied at every transition from User Mode
to Kernel Mode.

Mentoring Operating System (MentOS) Signals 25 / 28

Delivering a Signal

At the beginning the handle_signal function saves the previous
signal mask, adds the signal to the list of blocked signals and
stores the process’ hardware state.
memcpy(¤t->saved_sigmask, ¤t->blocked, sizeof(sigset_t));
sigaddset(¤t->blocked, signr);

current->thread.signal_regs = *regs;

Then it sets the instruction pointer of the current process to the
specified signal handler.
regs->eip = (uintptr_t)ka->sa_handler;

Mentoring Operating System (MentOS) Signals 26 / 28

Delivering a Signal

Then it sets up the User Mode stack. When the process switches
again to User Mode, it starts executing the signal handler, because
the handler’s starting address was forced into the program counter.
// Push on the stack the signal number, first and only argument of the handler.
PUSH_ARG(regs->useresp, int, signr);

// Push on the stack the function required to handle the signal return.
PUSH_ARG(regs->useresp, uint32_t, current->sigreturn_eip);

When that function terminates, the return code placed on the User
Mode stack is executed. This code invokes the sigreturn system
call, which restores the registers before the signal handling,
allowing the process to resume execution from where the signal
handler was called.
*f = current->thread.signal_regs;

// Restore the previous signal mask.
memcpy(¤t->blocked, ¤t->saved_sigmask, sizeof(sigset_t));

Mentoring Operating System (MentOS) Signals 27 / 28

Delivering a Signal

TODO: immagine user stack

Mentoring Operating System (MentOS) Signals 28 / 28

	Signals
	Signals transmission
	Actions Performed upon Delivering a Signal
	Data Structures Associated with Signals
	Generating a Signal
	Delivering a Signal

