
Mentoring Operating System (MentOS)
Software Timers

Created by
Filippo Ziche, Daniele Nicoletti

Enrico Fraccaroli
enrico.fraccaroli@gmail.com

Mentoring Operating System (MentOS) Software Timers 1 / 32

mailto:enrico.fraccaroli@gmail.com


Table of Contents

1. Introduction
1.1. Software Timers
1.2. Clock and Ticks system

2. MentOS
2.1. Dynamic Timers
2.2. Hierarchical Timing Wheels
2.3. Example
2.4. Performance

Mentoring Operating System (MentOS) Software Timers 2 / 32



Introduction

Mentoring Operating System (MentOS) Software Timers 3 / 32



Introduction

Software Timers

Mentoring Operating System (MentOS) Software Timers 4 / 32



Software Timers

Definition
A timer is a software facility that allows functions to be invoked at
some future moment, after a given time interval has elapsed; a
time-out denotes a moment at which the time interval associated
with a timer has elapsed.
Timers are widely used both by the kernel and by processes. Most
device drivers use timers to detect anomalous conditions—floppy
disk drivers, for instance, use timers to switch off the device motor
after the floppy has not been accessed for a while, and parallel
printer drivers use them to detect erroneous printer conditions.

Timers are also used quite often by programmers to force the
execution of specific functions at some future time (see for
example the setitimer and alarm System Calls).

Mentoring Operating System (MentOS) Software Timers 5 / 32



Introduction

Clock and Ticks system

Mentoring Operating System (MentOS) Software Timers 6 / 32



Clock and Ticks system

At the heart of the operating system there is a clock.

Every time it cycles the timer_handler function is called. This
function runs the scheduler but also increments a variable called
timer_ticks which is used to keep track of the amount of time
passed since the start of the system.
void timer_handler(pt_regs *reg) {

...

// Check if a second has passed.
timer_seconds += ((++timer_ticks % TICKS_PER_SECOND) == 0);
// Update all timers
run_timer_softirq();
// Perform the schedule.
scheduler_run(reg);

...
}

Mentoring Operating System (MentOS) Software Timers 7 / 32



Clock and Ticks system

Every timers has an expires field, it contains the amount of ticks
needed for it to expire. If we want, for example, a timers with a
time-out of 4 seconds we can add the correspondent amount of
ticks (4000 in MentOS) to the current timer_ticks value.
int seconds = 4:
sleep_timer->expires = timer_get_ticks() + TICKS_PER_SECOND * seconds;

At every clock cycle we check if the expires field is less or equal
the current timer_ticks and in that case we invoked the delayed
function associated with the timer.

Mentoring Operating System (MentOS) Software Timers 8 / 32



MentOS

Mentoring Operating System (MentOS) Software Timers 9 / 32



MentOS

Dynamic Timers

Mentoring Operating System (MentOS) Software Timers 10 / 32



Dynamic Timers

In MentOS the software timers are called Dynamic Timers, they
are dynamically created and destroyed. No limit is placed on the
number of currently active dynamic timers.
struct timer_list {

/// Protects the access to the timer.
spinlock_t lock;
/// Lists of timers are mantained using the list_head.
struct list_head entry;
/// Ticks value when the timer has to expire
unsigned long expires;
/// Functions to be executed when the timer expires
void (*function)(unsigned long);
/// Custom data to be passed to the timer function
unsigned long data;
/// Pointer to the structure containing all the other related timers.
tvec_base_t *base;

};

Mentoring Operating System (MentOS) Software Timers 11 / 32



Dynamic Timers

We can initialize, add and remove timers using the following
functions inside inc/hardware/timer.h

/// Initializes a new timer struct.
void init_timer(struct timer_list *timer);

/// Add a new timer to the current CPU.
void add_timer(struct timer_list *timer);

/// Removes a timer from the current CPU.
void del_timer(struct timer_list *timer);

Note
Timers are stored per-CPU: every CPU manages a subset of timers.

Mentoring Operating System (MentOS) Software Timers 12 / 32



MentOS

Hierarchical Timing Wheels

Mentoring Operating System (MentOS) Software Timers 13 / 32



Hierarchical Timing Wheels

The performance of software timers is critical. The timer_handler
function has to check all timers and determine if they have expired
and then execute a context switch. It has to be as fast as possible,
if we have a lot of timers (think of a server handling socket
connections for thousands of users) a slow data structure will grind
the system to a halt.

There exists multiple data structures for storing the timers:
I Unordered Timer List
I Ordered Timer List
I Timer Trees
I Simple Timing Wheels
I Hashing Wheel with Ordered Timer Lists
I Hierarchical Timing Wheels

Mentoring Operating System (MentOS) Software Timers 14 / 32



Hierarchical Timing Wheels

It this slides we will describe only the currently implemented
system in MentOS: Hierarchical Timing Wheels.

The adopted solution is based on a clever data structure that
partitions the expires values into blocks of ticks and allows
dynamic timers to percolate efficiently from lists with larger expires
values to lists with smaller ones.

In other words, instead of storing every timer in a single list we
distribute the timers in multiple arrays called timer_vec. Each
timer_vec is a ring buffer of lists of timers.

This allows amortised O(1) time complexity for all operations:
insert, delete, update.

Mentoring Operating System (MentOS) Software Timers 15 / 32



Hierarchical Timing Wheels

The timers are stored inside the tvec_base_s structure.
typedef struct tvec_base_s {

/// The earliest expiration time of the dynamic timers yet to be checked
unsigned long timer_ticks;
/// Lists of timers that will expires in the next 255 ticks
struct timer_vec_root tv1;
/// Lists of timers that will expires in the next 2^14 - 1 ticks
struct timer_vec tv2;
/// Lists of timers that will expires in the next 2^20 - 1 ticks
struct timer_vec tv3;
/// Lists of timers that will expires in the next 2^26 - 1 ticks
struct timer_vec tv4;
/// Lists of timers with extremely large expires fields (2^32 - 1 ticks)
struct timer_vec tv5;

} tvec_base_t;

Mentoring Operating System (MentOS) Software Timers 16 / 32



Hierarchical Timing Wheels

The tv1 field is a structure of type timer_vec_root, which includes
a vec array of 256 list_head elements, i.e., lists of dynamic timers.
struct timer_vec_root {

struct list_head vec[TVR_SIZE];
};

The tv2, tv3, and tv4 fields are structures of type timer_vec
consisting of an array caled vec of 64 list_head elements. These
lists contain all dynamic timers that will decay within the next
214˘1, 220˘1, 226 − 1 ticks, respectively.
struct timer_vec {

struct list_head vec[TVN_SIZE];
}

The tv5 field is identical to the previous ones, except that the last
entry of the internal array vec is a list that includes dynamic timers
with extremely large expires fields.

Mentoring Operating System (MentOS) Software Timers 17 / 32



Hierarchical Timing Wheels

Figure: Diagram of tvec_bases structure

Mentoring Operating System (MentOS) Software Timers 18 / 32



Hierarchical Timing Wheels

The tv1 array is indexed directly by the bottom bits of the
timer_ticks value to find the next set of events to execute.

When the kernel has, over the course of 256 ticks, cycled through
the entire tv1 array, that array must be replenished with the next
256 ticks worth of events. Replenishing is done by using the next
set of ticks bits (six, normally) to index into the next array tv2,
which points to those 256 ticks of timer entries.

Those entries are “cascaded” down to tv1 and distributed into the
appropriate slots depending on their expiration times. When tv2 is
exhausted, it is replenished from tv3 in the same way. This process
continues up to tv5.

Mentoring Operating System (MentOS) Software Timers 19 / 32



Hierarchical Timing Wheels

Figure: How the bits of the timer_ticks variable are used to index the
various wheels

Mentoring Operating System (MentOS) Software Timers 20 / 32



Hierarchical Timing Wheels

How the cascade logic inside run_timer_softirq works:
// Index of the current timer to execute
int current_time_index = base->timer_ticks & TVR_MASK;

// If the index is zero then all lists in tv1 have been checked and are empty
if (!current_time_index) {

int tv2_index = (base->timer_ticks >> TIMER_TICKS_BITS(0)) & TVN_MASK;
int tv3_index = (base->timer_ticks >> TIMER_TICKS_BITS(1)) & TVN_MASK;
int tv4_index = (base->timer_ticks >> TIMER_TICKS_BITS(2)) & TVN_MASK;
int tv5_index = (base->timer_ticks >> TIMER_TICKS_BITS(3)) & TVN_MASK;

// Cascade timers up in the hierarchy
if (!cascade(base, &base->tv2, tv2_index, 2) &&

!cascade(base, &base->tv3, tv3_index, 3) &&
!cascade(base, &base->tv4, tv4_index, 4) &&
!cascade(base, &base->tv5, tv5_index, 5));

}

Mentoring Operating System (MentOS) Software Timers 21 / 32



Hierarchical Timing Wheels

The cascade function removes the timers from the current time
slot and reinserts them inside the data structure:
int cascade(tvec_base_t* base, timer_vec* tv, int time_index, int tv_index)
{

if (!list_head_empty(tv->vec + time_index)) {
// Reinsert all timers into base in the new correct list.
struct list_head *it, *tmp;
list_for_each_safe (it, tmp, tv->vec + time_index) {

//
struct timer_list *timer = list_entry(it, struct timer_list, entry);
//
list_head_del(it);
//
__add_timer_tvec_base(base, timer);

}
}
return time_index;

}

Mentoring Operating System (MentOS) Software Timers 22 / 32



Hierarchical Timing Wheels

The __add_timer_tvec_base function uses the __find_tvec
function to find the correct wheel where to insert the timer.

We know that each wheel represents all the events that will happen
in a certain amount of time, we consider the delta time between
the expire field of the timer and the current timer_ticks and then
pick the first wheel in the hierarchy that can hold that delta.
unsigned long expires = timer->expires;
unsigned long ticks = expires - base->timer_ticks;

// How many ticks in the future a wheel can store
// TIMER_TICKS_BITS(N) = (TVR_BITS + TVN_BITS * (N))
// TIMER_TICKS(N) = (1 << TIMER_TICKS_BITS(N))

unsigned long tv1_ticks = TIMER_TICKS(0); // 2^8 ticks in the future
unsigned long tv2_ticks = TIMER_TICKS(1); // 2^14 ticks in the future
unsigned long tv3_ticks = TIMER_TICKS(2); // 2^20 ticks in the future
unsigned long tv4_ticks = TIMER_TICKS(3); // 2^26 ticks in the future

Mentoring Operating System (MentOS) Software Timers 23 / 32



Hierarchical Timing Wheels

if (ticks < tv1_ticks) {
*index = expires & TVR_MASK;
*tv_index = 1;

}
else if (ticks < tv2_ticks) {

*index = (expires >> TIMER_TICKS_BITS(0)) & TVN_MASK;
*tv_index = 2;

}
else if (ticks < tv3_ticks) {

*index = (expires >> TIMER_TICKS_BITS(1)) & TVN_MASK;
*tv_index = 3;

}
else if (ticks < tv4_ticks) {

*index = (expires >> TIMER_TICKS_BITS(2)) & TVN_MASK;
*tv_index = 4;

}
else {

*index = (expires >> TIMER_TICKS_BITS(3)) & TVN_MASK;
*tv_index = 5;

}

Mentoring Operating System (MentOS) Software Timers 24 / 32



MentOS

Example

Mentoring Operating System (MentOS) Software Timers 25 / 32



Hierarchical Timing Wheels - Simple Example

Let’s look at an example. This is an initial configuration of the
wheels. We have completed a cycle of tv1 and we have two active
timers, t5 and t4.

Mentoring Operating System (MentOS) Software Timers 26 / 32



Hierarchical Timing Wheels - Simple Example

We advance the timer_ticks variable and the wheels. Then we
relocate the timers in the correct position inside tv1 using their
expire field and __find_tvec function.

Mentoring Operating System (MentOS) Software Timers 27 / 32



Hierarchical Timing Wheels - Simple Example

This is the state of the wheels after calling the cascade function.

Mentoring Operating System (MentOS) Software Timers 28 / 32



Hierarchical Timing Wheels - Simple Example

After 3 ticks, t5 is executed and removed from the wheels.

Mentoring Operating System (MentOS) Software Timers 29 / 32



Hierarchical Timing Wheels - Simple Example

After another 4 ticks, also t4 expires and is consequently removed.

Mentoring Operating System (MentOS) Software Timers 30 / 32



MentOS

Performance

Mentoring Operating System (MentOS) Software Timers 31 / 32



Hierarchical Timing Wheels - Performance

To sum up, this rather complex algorithm ensures excellent
performance. In 255 timer interrupt occurrences out of 256 (in
99.6% of the cases), the run_timer_softirq function just runs the
functions of the decayed timers, if any.

To replenish tv1 periodically, it is sufficient 63 times out of 64 to
partition one list of tv2 into the 256 lists of tv1.

The tv2 array, in turn, must be replenished in 0.006 percent of the
cases (that is, once every 16.4 seconds).

Similarly, tv3 is replenished every 17 minutes and 28 seconds, and
tv4 is replenished every 18 hours and 38 minutes. tv5 does not
need to be replenished.

Mentoring Operating System (MentOS) Software Timers 32 / 32


	Introduction
	Software Timers
	Clock and Ticks system

	MentOS
	Dynamic Timers
	Hierarchical Timing Wheels
	Example
	Performance


