
Mentoring Operating System (MentOS)
Real-Time Scheduler

Created by
Enrico Fraccaroli

enrico.fraccaroli@gmail.com

Mentoring Operating System (MentOS) Real-Time Scheduler 1 / 41

mailto:enrico.fraccaroli@gmail.com

Table of Contents

1. Fields and systemcalls

2. Schedulability Analysis

3. Scheduler Algorithms

Mentoring Operating System (MentOS) Real-Time Scheduler 2 / 41

Fields and systemcalls

Mentoring Operating System (MentOS) Real-Time Scheduler 3 / 41

Introduction

To make possible the usage of real time tasks, a new set of
attributes and function has been introduced in MentOS; not only
on kernel-side, but also on user-side via the libc, to allow to the
user to create and execute its own RT programs.
On the following slides there’s a presentation on every new element
introduced.

Mentoring Operating System (MentOS) Real-Time Scheduler 4 / 41

Real-Time Tasks Fields

New fields were added in struct sched_entity to accomodate the
new type of tasks:
struct sched_entity {

...

time_t period; // Expected period of the task
time_t deadline; // Absolute deadline
time_t arrivaltime; // Absolute time of arrival of the task
bool_t is_periodic; // Determines if it is a periodic task.

...
}

These fields refers to the basic informations we want for the tasks.
N.B.: Special tasks

Mentoring Operating System (MentOS) Real-Time Scheduler 5 / 41

Real-Time Tasks Fields

These ones are instead used in the schedulability test
struct sched_entity {

...

bool_t executed; // Has already executed
bool_t is_under_analysis; // Do we need to analyze the WCET of the process?
time_t next_period; // Beginning of next period
time_t worst_case_exec; // Worst case execution time
double utilization_factor; // Processor utilization factor

...
}

New task’s fields are initialized after its creation on standard values
by the __alloc_task function (see
<mentos>/inc/process/process.c).

Mentoring Operating System (MentOS) Real-Time Scheduler 6 / 41

System-calls

The programmer is expected to manipulate the values for the
deadline, period, arrivaltime, is_periodic and sched_priority
fields with the given systemcalls:

#include <sched.h>

//set "param" fields values to the task fields
int res = sched_setparam(pid_t pid, const sched_param_t *param)
//get task fields values copied in "param" fields
int res1 = sched_getparam(pid_t pid, const sched_param_t *param)

Each one return an integer that could be:
I 1 if syscall had succeded.
I -1 if there was an error.

Mentoring Operating System (MentOS) Real-Time Scheduler 7 / 41

Struct sched_param_t

The sched_param_t structure is implemented as follows:
struct sched_param_t {

int sched_priority; // Static execution priority.
time_t period; // Expected period of the task
time_t deadline; // Absolute deadline
time_t arrivaltime; // Absolute time of arrival of the task
bool_t is_periodic; // Is task periodic?

}

Mentoring Operating System (MentOS) Real-Time Scheduler 8 / 41

Example of usage

#include <sched.h>
#include <sys/unistd.h>
int main(int argc, char * argv[])
{

pid_t cpid = getpid(); // Get process pid.
sched_param_t param; // Declare schduling parameter struct.

// Get current parameters (You could print them...).
sched_getparam(cpid, ¶m);

// Change parameters.
param.period = 5000;
param.deadline = 5000;
param.is_periodic = true;

// Set modified parameters.
sched_setparam(cpid, ¶m);

...

Mentoring Operating System (MentOS) Real-Time Scheduler 9 / 41

Waitperiod

This system call is used to interrupt the task’s execution and to
wait before being executed again for at least a time frame equal to
its period field (period must be previusly set with setparam).
#include <sched.h>

// Returns 0 on normal completion, or a negative number
// if there was an error.
int sys_waitperiod();

In reality waitperiod() does a lot more than this, but we’ll see
that later...

Mentoring Operating System (MentOS) Real-Time Scheduler 10 / 41

Example of usage

This is an extract of code in wich the waitperiod() is used.
...

if (waitperiod() == -1) {
printf("[%s] Error in waitperiod: %s\n", argv[0], strerror(errno));
break;

}

...

In a real period task, the core part of the code would be in a
infinite loop, with waitperiod() being the last instruction of the
cycle.

Mentoring Operating System (MentOS) Real-Time Scheduler 11 / 41

Schedulability Analysis

Mentoring Operating System (MentOS) Real-Time Scheduler 12 / 41

Introduction

A fundamental aspect when dealing with real-time tasks is the
schedulability analysis, that is a test made before adding to the
runqueue a new RT task.
The whole purpose of this test is to make sure that adding a new
task on the running set, does not prevents the others to execute
withing their own deadline.

In MentOS the schedulability analysis is implemented by executing
new periodic tasks the first time using a non periodic scheduling
algorithm,and then using a periodic one. Thanks to this we can
have an evaluation of the task WCET(Worst Case execution time)
and determine if the task is schedulable or not.

Mentoring Operating System (MentOS) Real-Time Scheduler 13 / 41

Who goes first?

Having periodic and aperiodic tasks running at the same time can
be a huge problem for the system. What if an aperiodic task is
being executed and this lead a periodic one to miss its deadline?

In MentOS however this is not a problem, in fact the policy of
mixed task execution it’s the following:
1. Execute all periodic tasks that are scheduled
2. Execute aperiodic tasks if there are no periodic left
3. Repeat

Also, it’s important to specify that every time the scheduler have
to choose, periodic tasks have priority over aperiodic ones.

Mentoring Operating System (MentOS) Real-Time Scheduler 14 / 41

Schedulability Test

Testing the program to check if it’s schedulable is up to the
waitperiod() system call, and is done differently for every
scheduler algorithm implemented.
We will show the schedulability analysis code specific to an
algorithm when we will present it later, with the algorithm itself.

Now a brief view on common parts of waitperiod():

Mentoring Operating System (MentOS) Real-Time Scheduler 15 / 41

Waitperiod overview

int sys_waitperiod() {
// Get the current task.
task_struct * task = runqueue.curr;

if (task == NULL)
return -ESRCH; // No such process.

if (!task->se.is_periodic) {
return -EPERM; // Operation not permitted.

// Update the Worst Case Execution Time (WCET).
time_t wcet = timer_get_ticks() - task->se.exec_start;
if (task->se.worst_case_exec < wcet)

task->se.worst_case_exec = wcet;

// Update the utilization factor.
task->se.utilization_factor = ((double)task->se.worst_case_exec / (double)task->se.period);

// If the task is under analysis, we need to test if the
// process can be placed with the other periodic tasks.
if (task->se.is_under_analysis) {

task->se.worst_case_exec = task->se.sum_exec_runtime;
bool_t is_not_schedulable = false;

// ... here starts the algorithms specific code ...

Mentoring Operating System (MentOS) Real-Time Scheduler 16 / 41

Waitperiod overview

If the user process calls waitperiod() but runqueue.curr, which is
the currently running process, is NULL, it returns the error ESRCH
(No such process).

If the user process is not periodic but still calls waitperiod(),
which is something that is not supposed to happen, the function
returns the error EPERM (Operation not permitted).

The is_under_analysis field is used to determine if the process
needs to go through the schedulability analysis. It cannot be
changed by the user process, and it is automatically set to true
every time you call the sched_setparam function. It is a way of
letting the scheduler know that you changed something in the
scheduling parameters of the process.

Mentoring Operating System (MentOS) Real-Time Scheduler 17 / 41

Waitperiod overview

#if defined(SCHEDULER_EDF)
...

#elif defined(SCHEDULER_RM)
...

#endif
// If it is not schedulable, we need to tell it to the process.
if (is_not_schedulable)

return -ENOTSCHEDULABLE;

// Otherwise, it is schedulable.
task->se.is_under_analysis = false;

// The task has been executed as non-periodic process so that his
// deadline is not been updated by the scheduling algorithm of
// periodic tasks. We need to update it manually.
task->se.next_period = timer_get_ticks();
task->se.deadline = timer_get_ticks() + task->se.period;

}
if (timer_get_ticks() > task->se.deadline)

pr_warning("%d > %d Missing deadline...\n", timer_get_ticks(), task->se.deadline);

// Tell the scheduler that we have executed the periodic process.
task->se.executed = true;
return 0;

}

Mentoring Operating System (MentOS) Real-Time Scheduler 18 / 41

Waitperiod overview

After the task exit this part of code and it is deemed schedulable,
it continues its execution as a proper periodic task and never does
this test again.

What if during the task execution another sched_setparam() is
called?

Mentoring Operating System (MentOS) Real-Time Scheduler 19 / 41

Scheduler Algorithms

Mentoring Operating System (MentOS) Real-Time Scheduler 20 / 41

Introduction

MentOS scheduler algorithms have been implemented based on
those present in the book:

Buttazzo, Giorgio C. Hard real-time computing systems: predictable
scheduling algorithms and applications. Vol. 24. Springer Science &
Business Media, 2011.

The algorithms implemented for periodic tasks are:
I Earliest Deadline First (EDF)
I Rate Monotonic (RM)

Also an algorithm for aperiodic tasks has been implemented:
I Aperiodic EDF (AEDF)

Mentoring Operating System (MentOS) Real-Time Scheduler 21 / 41

Earliest Deadline First

This algorithm is based on the idea of choosing for execution the
task with the earliest absolute deadline.
This is an elegant and simple solution when there are tasks with
dynamics arrival-times and preemption is allowed.

Mentoring Operating System (MentOS) Real-Time Scheduler 22 / 41

EDF example
Here an example of an EDF scheduling, where ai is the arrival
time, Ci is the computation time, and di is the deadline:

J1 J2 J3 J4 J5
ai 0 0 2 3 6
Ci 1 2 2 2 2
di 2 5 4 10 9

0 1 2 3 4 5 6 7 8 9 10

J5

J4

J3

J2

J1

Mentoring Operating System (MentOS) Real-Time Scheduler 23 / 41

EDF implementation

Necessary variables are declared and initialized at the beginning of
the function.
static inline task_struct *scheduler_edf(runqueue_t *runqueue)
{

// Pointer to the next task to schedule.
task_struct *next = NULL, *entry;
// Initialize the nearest "next deadline".
time_t min = UINT_MAX;

...

Mentoring Operating System (MentOS) Real-Time Scheduler 24 / 41

EDF implementation

...

// Inter over the runqueue to find the task with the earliest absolute deadline.
list_for_each_decl(it, &runqueue->queue)
{

// Check if we reached the head of list_head, and skip it.
if (it == &runqueue->queue)

continue;

// Get the current entry.
entry = list_entry(it, task_struct, run_list);

// If the entry is not a periodic task, or is a periodic task but under analysis, skip
it.

if (!entry->se.is_periodic || entry->se.is_under_analysis)
continue;

...

Mentoring Operating System (MentOS) Real-Time Scheduler 25 / 41

EDF implementation

...
if (entry->se.executed) {

// If the period for the entry is starting again and it has
// already executed, set it as ’executable again’.
// Deadline and next_period are propagated.
if (entry->se.next_period <= timer_get_ticks()) {

entry->se.executed = false;
entry->se.deadline += entry->se.period;
entry->se.next_period += entry->se.period;

}
} else {

// If the deadline of the process is less than the minimum value,
//pick it.
if ((entry->se.deadline < min) && (!entry->se.executed)) {

next = entry;
min = next->se.deadline;

}
}

} // list_for_each_decl(it, &runqueue->queue)
...

Mentoring Operating System (MentOS) Real-Time Scheduler 26 / 41

EDF implementation

Here is clearly visible the solution that allow to aperiodic tasks to
be executed together with periodic ones.

...

// If there are no periodic task to execute, just pick an aperiodic task by using CFS.
if (next == NULL)

next = scheduler_cfs(runqueue, true);

return next;
}

Mentoring Operating System (MentOS) Real-Time Scheduler 27 / 41

EDF schedulability analysis

In EDF a task is deemed schedulable if:
1. given that previous set of running tasks was schedulable;
2. adding the new task still allow U ≤ 1.

The utilization factor U is computed for a given set of n tasks as
follows:

U =
n∑

i=1

Ci
Ti

where Ci is the Computation time, and Ti is the period.

Mentoring Operating System (MentOS) Real-Time Scheduler 28 / 41

EDF schedulability analysis code

As previously shown this is part of waitperiod() system call, and
is specific to EDF algorithm.

#if defined(SCHEDULER_EDF)
double U = 0;
// Iterate over the runnqueue.
list_for_each_decl(it, &runqueue.queue)
{

task_struct *entry = list_entry(it, task_struct, run_list);

// Sum the utilization factor of all periodic tasks.
if (entry->se.is_periodic)

U += entry->se.utilization_factor;
}
// If U is above 1, then adding the process would make the set of tasks
// non schedulable.
if (U > 1)

is_not_schedulable = true;

Mentoring Operating System (MentOS) Real-Time Scheduler 29 / 41

Rate Monotonic

Rate Monotonic is a fixed priority algorithm. The priority is
assigned to every task during its schedulability analysis phase in a
way that: higher the request rate(i.e.: shorter the period),
higher the priority for a given task.
Moreover Rate Monotonic is intrinsically preemptive: an
executing task is preempted by a new arriving one with shorter
period.

Mentoring Operating System (MentOS) Real-Time Scheduler 30 / 41

Rate Monotonic Implementation

Necessary variables are declared and initialized at the beginning of
the function.
static inline task_struct *scheduler_rm(runqueue_t *runqueue)
{

// Pointer to the next task to schedule.
task_struct *next = NULL, *entry;
// Initialize the nearest "next period".
time_t min = UINT_MAX;

...

Mentoring Operating System (MentOS) Real-Time Scheduler 31 / 41

Rate Monotonic Implementation

...

// Iter over the runqueue to find the task with the shortest period.
list_for_each_decl(it, &runqueue->queue)
{

// Check if we reached the head of list_head, and skip it.
if (it == &runqueue->queue)

continue;

// Get the current entry.
entry = list_entry(it, task_struct, run_list);

// If the entry is not a periodic task, or is a periodic task but under analysis, skip
it.

if (!entry->se.is_periodic || entry->se.is_under_analysis)
continue;

...

Mentoring Operating System (MentOS) Real-Time Scheduler 32 / 41

Rate Monotonic Implementation

...

if (entry->se.executed) {
// If the period for the entry is starting again and it has
// already executed, set it as ’executable again’.
// Deadline and next_period are propagated.
if (entry->se.next_period <= timer_get_ticks()) {

entry->se.executed = false;
entry->se.deadline += entry->se.period;
entry->se.next_period += entry->se.period;

}
} else {

// If the next period of the process is less than the minimum
// value, pick it.
if (entry->se.next_period < min) {

next = entry;
min = next->se.next_period;

}
}

} // list_for_each_decl(it, &runqueue->queue)

...

Mentoring Operating System (MentOS) Real-Time Scheduler 33 / 41

Rate Monotonic Implementation

...

// If there are no periodic task to execute, just pick an aperiodic task by using CFS.
if (next == NULL)

next = scheduler_cfs(runqueue, true);

return next;
}

As in EDF, here is clearly visible the solution that allow to
aperiodic tasks to be executed together with periodic ones.

Mentoring Operating System (MentOS) Real-Time Scheduler 34 / 41

RM schedulability analysis

As previusly shown this is part of waitperiod() system call, and is
specific to RM algorithm.
#elif defined(SCHEDULER_RM)

// Calculating least upper bound of utilization factor.
// For large amount of processes ULUB asymptotically should
// reach ln(2).

double ULUB = (runqueue.num_periodic * (pow(2, (1.0 / runqueue.num_periodic)) - 1));
double U = 0;

list_for_each_decl(it, &runqueue.queue)
{

task_struct *entry = list_entry(it, task_struct, run_list);

// Sum the utilization factor of all periodic tasks.
if (entry->se.is_periodic)

U += entry->se.utilization_factor;
}

...

Mentoring Operating System (MentOS) Real-Time Scheduler 35 / 41

RM schedulability analysis

...

// If the sum of utilization factor is bounded between ULUB and 1
// we need to calculate the response time analysis for each process.
if (U > 1)

is_not_schedulable = true;
else if (U <= ULUB)

is_not_schedulable = false;
else

is_not_schedulable = __response_time_analysis();

If the utilization factor calculated is set between ULUB (least
upper bound for U) and 1 (if > 1 means that CPU is over 100% of
work load), the response time analysis must be calculated to check
if the introduction of the new task is feasable for the schedule of
the entire set of tasks.

Mentoring Operating System (MentOS) Real-Time Scheduler 36 / 41

RM schedulability analysis

Here is shown the function that calculate the response time
analysis for a given task:
static int __response_time_analysis()
{

task_struct *previous;
time_t r, previous_r = 0;

list_for_each_decl(it, &runqueue.queue) {
task_struct *entry = list_entry(it, task_struct, run_list);
// Skip non-periodic processes.
if (!entry->se.is_periodic) continue;

// Set r equal to worst case exec because is the first point in
// time that the task could possibly complete.
r = entry->se.worst_case_exec;

// Reset the previous r.
previous_r = 0;

...

Mentoring Operating System (MentOS) Real-Time Scheduler 37 / 41

RM schedulability analysis

...

// The analysis can be completed either missing the deadline or
// reaching a fixed point
while (r < entry->se.deadline && r != previous_r) {

previous_r = r;
r = entry->se.worst_case_exec;
list_for_each_decl(it2, &runqueue.queue) {

previous = list_entry(it2, task_struct, run_list);
// Skip non-periodic tasks.
if (!previous->se.is_periodic)

continue;
// Check the interferences of higher priority processes.
if (previous->se.period < entry->se.period)

r += (int)ceil((double)previous_r / (double)previous->se.period) *
previous->se.worst_case_exec;

}
}
// Feasibility of scheduler is guaranteed if and only if the
// response time analysis is lower than deadline.
if (r > entry->se.deadline)

return 1;
}
return 0;

}

Mentoring Operating System (MentOS) Real-Time Scheduler 38 / 41

Aperiodic EDF

The EDF scheduler for aperiodic tasks is implemented almost like
the EDF for periodic tasks, with the difference that this one does
not need a schedulability test. Doing so however may bring some
task to miss their deadline.

Mentoring Operating System (MentOS) Real-Time Scheduler 39 / 41

AEDF Implementation

static inline task_struct *scheduler_aedf(runqueue_t *runqueue)
{

// Pointer to the next task to schedule.
task_struct *next = NULL;
// Initialize the nearest "next deadline".
time_t min = UINT_MAX;

// Iter over the runqueue to find the task with the earliest absolute deadline.
list_for_each_decl(it, &runqueue->queue) {

task_struct *entry = list_entry(it, task_struct, run_list);

//Check if entry is a "special" task i.e. tasks with deadline = 0
if(entry->se.deadline != 0) {

//Select the task with minimum absolute deadline
if ((entry->se.deadline <= min)) {

next = entry;
min = next->se.deadline;

}
}

}

...

Mentoring Operating System (MentOS) Real-Time Scheduler 40 / 41

AEDF Implementation

If there are no "real-time" tasks to be executed, pick a normal one:
...

// If there are no tasks with deadline != 0 to execute, just pick another task by using CFS.
if (next == NULL)

next = scheduler_cfs(runqueue, true);

return next;
}

Mentoring Operating System (MentOS) Real-Time Scheduler 41 / 41

	Fields and systemcalls
	Schedulability Analysis
	Scheduler Algorithms

