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Process descriptor

The task_struct is a data structure used by the Kernel to
represent a process and store information about it1.
struct task_struct {

pid_t pid; // the process identifier
unsigned long state; // the current process’s state
struct task_struct *parent; // pointer to parent process
struct list_head children; // list of children process
struct list_head siblings; // list of siblings process
struct mm_struct *mm; // memory descriptor
struct sched_entity se; // time accounting (aka schedule entity)
struct thread_struct thread; // context of process
struct list_head run_list ; // pointer to the process into the scheduler

}

N.B.: The memory descriptor of a process is only reported here for
completeness. It will be explained in detail in the Memory
Management section.

1 In Linux, it is quite big, 1.7KB on 32-bit machine (include/linux/sched.h)
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Process descriptor

Process identifier
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Process identifier

Process Identifier (PID) is numeric value identifying a process.
When a new process is created a new PID is generated by
summing 1 to the last assigned PID.

In Linux, the maximum value for a PID is 32768. When the PID
maximum value is reached, the last assigned PID is reset to 0
before searching for a new PID.

The macro RESERVED_PID (usually set to 300) is defined to
reserved PIDs to system processes and daemons, namely processes
proving a service (e.g. a web server). All user’s processes have PID
greater than RESERVED_PID.
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Process descriptor

State of a process
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State of a process (1/3)

Process state is a numeric value describing the current state of
the process. A process can be in one of the following state:
I TASK_RUNNING: either the process is currently in execution, or

it has all the resources to be executed except the CPU.
I TASK_INTERRUPTIBLE: the process is blocked (sleep), waiting

for some condition to run. When this condition exists, the
kernel sets the process’s state to TASK_RUNNING. The process
also awakes and becomes runnable if it receives a signal (e.g.,
interrupt, signal, released resources).

I TASK_UNINTERRUPTIBLE: this state is identical to
TASK_INTERRUPTIBLE but it does not depend on specific signal,
it must wait without interruption for a specific weak-up call
(e.g., task waiting for data transferred from block dev to
buffer).
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State of a process (2/3)

I TASK_STOPPED: process execution has stopped; the task is not
running nor is it eligible to run.

I EXIT_ZOMBIE: Process execution is terminated, but the parent
process has not yet issued a wait4(0) or waitpid() system
call to return information about the dead process.

I EXIT_DIED: The final state: the process is being removed by
the system because the parent process has just issued a
wait4() or waitpid() system call for it.

Remember init (PID = 1) process.
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State of a process (3/3)

Existing task
calls fork()

TASK_RUNNING
(ready but not running)

TASK_RUNNING
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terminated
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via exit()

Task sleeps or waits
for a condition/event

Condition/event occurs
and task is woken

Task is preempted

Figure: Flow chart of process states
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Relationships among processes (1/2)

Processes created by a program have a parent/child relationship.
When a process creates multiple children, these children have
sibling relationships.
struct task_struct {

// ...
pid_t pid; // the process identifier
struct task_struct *parent; // pointer to parent process
struct list_head children; // list of children process
struct list_head siblings; // list of siblings process
// ...

}

Fields of task_struct describing the relations among processes:
I parent: pointer to the process’s parent;
I children: The head of the list containing all children created

by the process.
I sibling: The head of the list containing all children created by

the process’s parent.
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Relationships among processes (2/2)

P3P2

P1

P4

Figure: Parenthood relationships among four processes.

Red lines go from parent to child.
Blue lines go from child to parent.
Black lines show relations between siblings.
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Process descriptor

Time accounting
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Time accounting (1/3)

The field se of our task_struct is a structure called sched_entity,
which holds all the information about scheduling activities.
struct task_struct {

//..
struct sched_entity se; // time accounting (aka schedule entity)
//..

}

It contains the priority and execution times of a process.
struct sched_entity {

int prio; // priority
time_t start_runtime; // start execution time
time_t exec_start; // last context switch time
time_t sum_exec_runtime; // overall execution time
time_t vruntime; // weighted execution time

}
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Time accounting (2/3)

I prio
Defines the execution priority of a process. It has a value in
the range [100, 139], where 100 means the highest priority,
and 139 means the lowest priority.
By default, the priority of a new generated process is 120.
A process can increment/decrement its prio value by using
the system call nice(inc), which takes as input parameter a
value in the range [-20, 19].
Examples:
I nice(1) (increment prio value of calling process by 1 unit)

120 ⇒ 121
I nice(-5) (decrement prio value of calling process by -5 units)

120 ⇒ 115
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Time accounting (3/3)

I start_runtime
The system execution time reporting when the process was
first executed in the CPU.

I exec_start
The system execution time reporting when the process was
last executed in the CPU.

I sum_exec_runtime
The overall execution time spent by the process in CPU.

I vruntime
The virtual runtime, namely the weighted overall execution
time spent by the process in CPU (see CFS).
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Process descriptor

Context of a process
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Context of a process

The field thread of our task_struct is a structure called
thread_struct, which holds all the information about the
execution of a process.
struct task_struct {

//..
struct thread_struct thread; // context of process

}

It is called the context of a process, and whenever a process is not
running, it contains all the vital information required to resume it.
struct thread_struct {

uint32_t ebp; // base pointer register
uint32_t esp; // stack pointer register
uint32_t ebx; // base register
uint32_t edx; // data register
uint32_t ecx; // counter
uint32_t eax; // accumulator register
uint32_t eip; // Instruction Pointer Register
uint32_t eflags; // flag register
bool_t fpu_enabled; // is FPU enabled?
savefpu fpu_register; // FPU context

}
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Scheduler
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Scheduler

Data structures
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Scheduler data structures

The runqueue data structure is the most important data structure
of the scheduler. It collects all system processes in running state.
struct runqueue {

unsigned long nr_running; // number of processes in running state
struct task_struct *curr; // pointer to current running process
struct list_head_t queue; // list of processes in running state

}

Pay attention!
The queue field is the head of a circular, doubly-linked list
collecting all system processes in running state. Consequently, a
field run_list of type struct list_head is added in the struct
task_struct.
(see slides fundamental concepts for more details).
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Scheduler execution flow

The scheduler is called after the handle of an interrupt/exception.
In detail, the following operations are performed by the scheduler:
1. updates the time accounting variables of the current process;
2. tries to wake up a waiting process. Whether a waiting

condition is met, a process is woken by setting its state to
running, and inserting it into the runqueue (topic not faced in
current slides);

3. run scheduling algorithm to pick the next process to be
executed by CPU from the runqueue;

4. performs context switch.
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Scheduler

Scheduling algorithms
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Scheduler selection (1/3)

I MentOS supports different types of scheduling algorithms,
which are selected during compilation via cmake, and called
by the scheduler_pick_next_task function;

I Furthermore, MentOS supports Real-Time scheduling, as
such, the runqueue might contain both periodic and
aperiodic tasks;

I This set of slides are focused on aperiodic tasks and
scheduling algorithms (e.g., RR, Priority, CFS);
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Scheduler selection (2/3)

scheduler_pick_next_task is a centralized function used by the
scheduler to get the next process to execute, and internally this
function calls the currently selected scheduling algorithm.
Based on the selected scheduling algorithm, the next process can
be chosen differently. MentOS supports the following three
aperiodic algorithms:
I RR - Round-Robin (__scheduler_rr);
I Priority - Highest Priority First (__scheduler_priority);
I CFS - Completely Fair Scheduler (__scheduler_cfs).

Pay attention!
In the following algorithms, we use the doubly-linked list defined in
Linux Kernel, to collect all processes in running state.
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Scheduler selection (3/3)
As shown in the following code, the scheduler_pick_next_task
function, executes the scheduling algorithm based on the selected
cmake option (e.g., SCHEDULER_RR, SCHEDULER_CFS, etc):
task_struct *scheduler_pick_next_task(runqueue_t *runqueue) {

...

// Create a pointer to the next task to schedule, and call the algorithm.
task_struct *next = NULL;

#if defined(SCHEDULER_RR)
next = __scheduler_rr(runqueue, false);

#elif defined(SCHEDULER_PRIORITY)
next = __scheduler_priority(runqueue, false);

#elif defined(SCHEDULER_CFS)
next = __scheduler_cfs(runqueue, false);

#elif defined(SCHEDULER_EDF)
next = __scheduler_edf(runqueue);

#elif defined(SCHEDULER_RM)
next = __scheduler_rm(runqueue);

#elif defined(SCHEDULER_AEDF)
next = __scheduler_aedf(runqueue);

#else
#error "You should enable a scheduling algorithm!"
#endif

...
return next; // Return the next process.

}
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Developer notes

Students or developers should implement their version of these
algorithms inside the provided functions by filling the missing
pieces, i.e., those strange comments

// Get its virtual runtime.
time_t min = /* ... */;

If you wants to implement the Highest Priority scheduler, the way
to go is to fill the missing pieces the appropriate function:
static inline task_struct *__scheduler_priority(runqueue_t *runqueue, bool_t skip_periodic) {
#ifdef SCHEDULER_PRIORITY

// Get the first element of the list.
task_struct *next = list_entry(runqueue->curr, task_struct, run_list);
// Get its static priority.
time_t min = /*...*/;

...

return next;
#else

return __scheduler_rr(runqueue, skip_periodic);
#endif
}
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Select next process (Round-Robin) (1/4)

Round Robin is a CPU scheduling algorithm where a fixed time
slice is assigned to each system process, in a cyclic way. It is
simple, preemptive, easy to implement, and starvation-free.

Pseudocode of Round-Robin algorithm.
Require: Current process c, List of processes L
Ensure: Next process n

1: nextNode = next(c)
2: if IsTheHead(L, nextNode) then
3: nextNode = next(nextNode)
4: end if
5: n = list_entry(nextNode)
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Select next process (Round-Robin) (2/4)

Here is the current implementation of the Round-Robin algorithm:
static inline task_struct *__scheduler_rr(runqueue_t *runqueue, bool_t skip_periodic)
{

// If there is just one task, return it; no need to do anything.
if (list_head_size(&runqueue->curr->run_list) <= 1) {

return runqueue->curr;
}
// Search for the next task (we do not start from the head, so INSIDE, skip the head).
list_for_each_decl(it, &runqueue->curr->run_list)
{

// Check if we reached the head of list_head, and skip it.
if (it == &runqueue->queue)

continue;
// Get the current entry.
task_struct *entry = list_entry(it, task_struct, run_list);
// We consider only runnable processes
if (entry->state != TASK_RUNNING)

continue;
// If entry is a periodic task, and we were asked to skip periodic tasks, skip it.
if (__is_periodic_task(entry) && skip_periodic)

continue;
// We have our next entry.
return entry;

}
return NULL;

}
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Select next process (Round-Robin) (3/4)

The actual implementation in MentOS considers the presence of
periodic processes, which are discussed in the Real-Time
Scheduler slides. As such, it is slightly more complex than what is
shown in the previous slide.
However, the idea stays the same, except we need to use a for
loop to search for a viable next process. We need a for loop
because the next process might be a periodic process, and we
might want to skip it.

Pay attention!
The code already helps you by providing most of the code, and you
just need to fill the missing pieces. So, the code already contains
the parts required to skip periodic tasks. I’m talking about:
if (__is_periodic_task(entry) && skip_periodic)

continue;
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Example (Round-Robin) (1/7)

First iteration:
I current_process = init

I __scheduler_rr() returns shell

init shell task1 task2 task3 task4

runqueue:
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Example (Round-Robin) (2/7)

Second iteration:
I current_process = shell

I __scheduler_rr() returns task1

init shell task1 task2 task3 task4

runqueue:
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Example (Round-Robin) (3/7)

Third iteration:
I current_process = task1

I __scheduler_rr() returns task2

init shell task1 task2 task3 task4

runqueue:
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Example (Round-Robin) (4/7)

Fourth iteration:
I current_process = task2

I __scheduler_rr() returns task3

init shell task1 task2 task3 task4

runqueue:
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Example (Round-Robin) (5/7)

Fifth iteration:
I current_process = task3

I __scheduler_rr() returns task4

init shell task1 task2 task3 task4

runqueue:
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Example (Round-Robin) (6/7)

Sixth iteration:
I current_process = task4

I __scheduler_rr() returns init

init shell task1 task2 task3 task4

runqueue:

Mentoring Operating System (MentOS) Process management 37 / 59



Example (Round-Robin) (7/7)

Seventh iteration:
I current_process = init

I __scheduler_rr() returns shell

init shell task1 task2 task3 task4

runqueue:
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Select next process (Highest Priority First) (1/3)

Round robin scheduling assumes that all processes are equally
important. This generally is untrue. We would sometimes like to
see long CPU-intensive (non-interactive) processes get a lower
priority than interactive processes.

In addition, different users may have different status. A system
administrator’s processes may rank above those of a student’s.

These goals led to the introduction of the Priority scheduling
algorithm.
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Select next process (Highest Priority First) (2/3)

Each process has a static priority. Smaller is the number, higher is
the priority of the process.

The scheduler simply picks the highest priority process to run. A
process is preempted whenever a higher priority process is
available in the run queue.

Advantage: priority scheduling provides a good mechanism where
the relative importance of each process may be precisely defined.
Disadvantage: If high priority processes use up a lot of CPU time,
lower priority processes may starve and be postponed indefinitely,
leading to starvation.
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Select next process (Highest Priority First) (3/3)

Pseudocode of Highest Priority First.
Require: Current process c, List of processes L
Ensure: Next process n

1: n = c
2: for all listNode ∈ L do
3: if !IsTheHead(L, listNode) then
4: t = list_entry(listNode)
5: if priority(t) < priority(n) then
6: n = t
7: end if
8: end if
9: end for

10: return n
The implementation of this algorithm is given to the student.
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Example (Highest Priority First) (1/3)

First block of iteration:
I current_process = task2

I __scheduler_priority() returns task2 until no process with
an higher priority is present in the system.

init
prio = 120

shell
prio = 120

task1
prio = 110

task2
prio = 105

runqueue:

Mentoring Operating System (MentOS) Process management 42 / 59



Example (Highest Priority First) (2/3)

Second block iteration:
I current_process = task1

I __scheduler_priority() returns task1 until no process with
an higher priority is present in the system.

init
prio = 120

shell
prio = 120

task1
prio = 110

runqueue:
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Example (Highest Priority First) (3/3)

Third block of iteration:
I current_process = task3

I __scheduler_priority() returns task3 until no process with
an higher priority is present in the system.

init
prio = 120

shell
prio = 120

task1
prio = 110

task3
prio = 105

runqueue:

How much time do init and shell have to wait to get the CPU?
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Select next process (Completely Fair Scheduler) (1/6)

Completely Fair Scheduler (CFS) aims to prevent starvation by
assigning the CPU fairly to all system processes.

Let consider an example to illustrate the goal of CFS. If there are
two tasks A and B, which have a same “weight", the portion of
available CPU time given to each task is 50%.

However, if the “weight" of task A increases on CPU by 10%, then
task A’s portion of the CPU is 55%, meanwhile task B’s portion of
the CPU becomes 45%.
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Select next process (Completely Fair Scheduler) (2/6)

CFS’s idea: let use the priority of each process to “weight" its
overall execution time (virtual runtime).
Processes having a low priority have a virtual runtime increasing
faster than processes with a higher priority. Scheduler always picks
the process with the lowest virtual execution time!
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Select next process (Completely Fair Scheduler) (3/6)

Scheduler needs to know the weight of the task to estimate its
CPU time’s portion. Hence, the priority number has to be mapped
to such a weight; this is done in the array prio_to_weight:
static const int prio_to_weight[] = {

/* 100 */ 88761, 71755, 56483, 46273, 36291,
/* 105 */ 29154, 23254, 18705, 14949, 11916,
/* 110 */ 9548, 7620, 6100, 4904, 3906,
/* 115 */ 3121, 2501, 1991, 1586, 1277,
/* 120 */ 1024, 820, 655, 526, 423,
/* 125 */ 335, 272, 215, 172, 137,
/* 130 */ 110, 87, 70, 56, 45,
/* 135 */ 36, 29, 23, 18, 15

};
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Select next process (Completely Fair Scheduler) (4/6)

A priority number of 120, which is the priority of a normal task, is
mapped to a weight of 1024.

Note that the ratio of two successive entries in the array is almost
1.25. This number is chosen such that:
I if the priority of a task is reduced by one, then it gets 10%

higher share of the available CPU time.
I if the priority of a task is increased by one, then it gets 10%

lower share of the available CPU time.
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Select next process (Completely Fair Scheduler) (5/6)

Given the array prio_to_weight we can update the virtual runtime
of a process p, namely its weighted overall execution by using the
formula:

vruntime += delta_exec * (NICE_0_LOAD / weight(p))

where:
I vruntime is the virtual run time of the process;
I delta_exec is the last amount of time spent by p in the CPU;
I NICE_0_LOAD is the weight of a task with normal priority

(1024);
I weight(p) is the weight of p defined by the array

prio_to_weight.
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Select next process (Completely Fair Scheduler) (6/6)

Pseudocode of Completely Fair Scheduler.
Require: Current process c, List of processes L
Ensure: Next process n

1: updateVirtualRuntime(c)
2: n = c
3: for all listNode ∈ L do
4: if !IsTheHead(L, listNode) then
5: task = list_entry(listNode)
6: if virtualRuntime(task) < virtualRuntime(n) then
7: n = task
8: end if
9: end if

10: end for
11: return n
The implementation of this algorithm is given to the students.
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Scheduler

Context switch
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Context switch

task_struct
process 1

task_struct
process 2

Kernel stack
(empty)

Kernel code

Memory process 1

Memory process 2

0xFFFFFFFF

0xC0000000

0x00000000

Kernel
adresses

User
adresses

CPU

The CPU performs a context switch
to change the process executed by
CPU.

The following example shows the
steps performed by the operating
system to save the current process’s
state (process 1), and then resume
the execution of a previously
stopped process (process 2).
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Context switch

task_struct
process 1

task_struct
process 2

CPU registers’ value
(context process 1)

Kernel code

Memory process 1

Memory process 2

0xFFFFFFFF

0xC0000000

0x00000000

Kernel
adresses

User
adresses

CPU

Timer
expired!

(1) Time expired! It is time to give
back control of CPU to kernel.
Timer device rises the signal INTR
and present 0 in irq line.

When INTR is risen, the CPU moves
from Ring 3 (user mode) to Ring 0
(kernel mode). After the CPU
privilege level change, the values of
CPU registers are pushed in the
Kernel’s stack.
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Context switch

task_struct
process 1

task_struct
process 2

CPU registers’ value
(context process 1)

Kernel code

Memory process 1

Memory process 2

0xFFFFFFFF

0xC0000000

0x00000000

Kernel
adresses

User
adresses

CPU

IRQ_0
handler

(2) CPU starts executing irq_0
interrupt handler to handle the
hardware interrupt 0 risen by Timer.
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Context switch

task_struct
process 1

task_struct
process 2

CPU registers’ value
(context process 1)

Kernel code

Memory process 1

Memory process 2

0xFFFFFFFF

0xC0000000

0x00000000

Kernel
adresses

User
adresses

CPU

scheduler()

(3) The scheduler is then called to
update the time accounting variables
of the interrupted process, and pick
the next process to run.

In this example, the scheduler picks
the process 2 as the next one.
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Context switch

task_struct
process 1

task_struct
process 2

CPU registers’ value
(context process 1)

Kernel code

Memory process 1

Memory process 2

0xFFFFFFFF

0xC0000000

0x00000000

Kernel
adresses

User
adresses

CPU

scheduler()

update

(4) Kernel updates the
thread_struct structure of the
task_struct of the process 1 in order
to save its context.
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Context switch

task_struct
process 1

task_struct
process 2

CPU registers’ value
(context process 2)

Kernel code

Memory process 1

Memory process 2

0xFFFFFFFF

0xC0000000

0x00000000

Kernel
adresses

User
adresses

CPU

scheduler()

replace

(4) Kernel updates the
thread_struct structure of the
task_struct of the process 1 in order
to save its context.

(5) Kernel replaces the context of
process 1 with the context of process
2 in its stack memory.
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Context switch

task_struct
process 1

task_struct
process 2

CPU registers’ value
(context process 2)

Kernel code

Memory process 1

Memory process 2

0xFFFFFFFF

0xC0000000

0x00000000

Kernel
adresses

User
adresses

CPU

iret

(6) Kernel moves the values from its
stack to CPU’s registers and runs an
iret assembly instruction, which
changes the CPU privilege level from
Ring 0 (kernel mode) to Ring 3
(user mode).
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Context switch

task_struct
process 1

task_struct
process 2

Kernel stack
(empty)

Kernel code

Memory process 1

Memory process 2

0xFFFFFFFF

0xC0000000

0x00000000

Kernel
adresses

User
adresses

CPU

(7) The context of the process 2 is
in the CPU’s registers finally. The
CPU can keep on executing the code
of the process 2 in user mode until
the next context switch.
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