
Mentoring Operating System (MentOS)
Fundamental concepts

Created by
Enrico Fraccaroli

enrico.fraccaroli@gmail.com

Mentoring Operating System (MentOS) Fundamental concepts 1 / 35

mailto:enrico.fraccaroli@gmail.com


Table of Contents

1. Computer Science : A recipe for FUN

2. Mentoring Operating System (MentOS)

3. Fundamental concepts
3.1. Central Processing Unit (CPU)
3.2. Programmable Interrupt Controller (PIC)
3.3. Memory organization

4. Folder Structure

5. Kernel doubly-linked list

Mentoring Operating System (MentOS) Fundamental concepts 2 / 35



Computer Science : A recipe for FUN

Mentoring Operating System (MentOS) Fundamental concepts 3 / 35



Fun

Dictionary

fun
/f2n/

noun

enjoyment, amusement, or light-hearted pleasure.
Losing is fun!
Either way, it keeps you busy.

Mentoring Operating System (MentOS) Fundamental concepts 4 / 35



Fun

Dictionary

fun
/f2n/

noun

enjoyment, amusement, or light-hearted pleasure.
Losing is fun! 1.

Winning isn’t everything, but losing really sucks...

1http://dwarffortresswiki.org/index.php/Losing
Mentoring Operating System (MentOS) Fundamental concepts 5 / 35



Fun

Programming is fun and
make you lose a lot of time keeps you busy!

Mentoring Operating System (MentOS) Fundamental concepts 6 / 35



Mentoring Operating System (MentOS)

Mentoring Operating System (MentOS) Fundamental concepts 7 / 35



MentOS

What...
MentOS (Mentoring Operating System) is an open source
educational operating system. MentOS can be freely downloaded
from a public github repository: github.io/MentOS/

Goal...
The goal of MentOS is to provide a project environment that is
realistic enough to show how a real Operating System work, yet
simple enough that students can understand and modify it in
significant ways.

Mentoring Operating System (MentOS) Fundamental concepts 8 / 35

https://MentOS-team.github.io/MentOS/


MentOS
Who?

Active Developers
I Enrico Fraccaroli, Project Manager & Developer

Previosu Developers
I Alessandro Danese, Project Manager & Developer

I Luigi Capogrosso, Developer

I Mirco De Marchi, Developer

I Andrea Cracco, Developer

I Linda Sacchetto, Developer

I Marco Berti, Developer

I Daniele Nicoletti, Developer

I Filippo Ziche, Developer

Mentoring Operating System (MentOS) Fundamental concepts 9 / 35



MentOS

Why...
There are so many operating systems, why did we write MentOS?

It is true, there are a lot of education operating system, BUT how
many of them follow the guideline defined by Linux?

MentOS aims to have the same Linux’s data structures and
algorithms. It has a well-documented source code, and you can
compile it on your laptop in a few seconds!

If you are a beginner in Operating-System developing, perhaps
MentOS is the right operating system to start with.

Mentoring Operating System (MentOS) Fundamental concepts 10 / 35



Fundamental concepts

Mentoring Operating System (MentOS) Fundamental concepts 11 / 35



The big picture

Bus interface

PC

PIC

ALU

System bus E/S Bridge Memory bus Main Memory

Input/Output bus

DisplayKeyboardMouse Hard Drive Network

CPU

Registers
Central Processing Unit (CPU)
Arithmetic Logic Unit (ALU)
Program Counter (PC)
Programmable Interrupt Controller (PIC)

Mentoring Operating System (MentOS) Fundamental concepts 12 / 35



Fundamental concepts

Central Processing Unit (CPU)

Mentoring Operating System (MentOS) Fundamental concepts 13 / 35



CPU registers

There are three types of registers:
I general-purpose data registers;
I segment registers;
I status control registers.

AH AL EAX AX

BH BL EBX BX

CH CL ECX CX

DH DL EDX DX

ESI

EDI

EBP

ESP

CS

DS

SS

ES

FS

GS

EFLAGS

EIP

General-purpose
registers

Segment
registers

Status and Control
registers

31 16 15 8 7 0 15 0 31 032-bit 16-bit

Mentoring Operating System (MentOS) Fundamental concepts 14 / 35



General-purpose registers

The eight 32-bit general-purpose registers are used to hold
operands for logical and arithmetic operations, operands for
address calculations and memory pointers. The following shows
what they are used for:
I EAX: Accumulator for operands and results data;
I EBX: Pointer to data in the DS segment;
I ECX: Counter for loop operations;
I EDX: I/O pointer;
I ESI: Pointer to data in the segment pointed to by the DS

register;
I EDI: Pointer to data in the segment pointed to by the ES

register;
I EBP: Pointer to data on the stack (in the SS segment);
I ESP: Stack pointer (in the SS segment).

Mentoring Operating System (MentOS) Fundamental concepts 15 / 35



Status and control registers

The two 32-bit status control registers are used for:
I EIP: Instruction pointer (also known as “program counter”);
I EFLAGS: Mantain group of status, control, system flags.

Table with some of the flags:

Bit Description Category Bit Description Category

0 Carry flag Status 11 Overflow flag Status
2 Parity flag Status 12-13 Privilege level System
4 Adjust flag Status 16 Resume flag System
6 Zero flag Status 17 Virtual 8086 mode System
7 Sign flag Status 18 Alignment check System
8 Trap flag Control 19 Virtual interrupt flag System
9 Interrupt enable flag Control 20 Virtual interrupt pending System
10 Direction flag Control 21 Able to use CPUID instruction System

Not listed bit are reserved. What is the privilege level of a CPU?

Mentoring Operating System (MentOS) Fundamental concepts 16 / 35



Privilege levels

Ring 3
User Mode
Applications

Ring 0
Kernel Mode

Operating System

Most modern x86 kernels
use only two privilege
levels, 0 and 3.

There are four privilege levels,
numbered 0 (most privileged) to 3
(least privileged).

At any given time, an x86 CPU is
running in a specific privilege level,
which determines what code can and
cannot execute.

Which of the following operations can
process do when the CPU is in user
mode?
1. open a file;
2. print on screen;
3. allocate memory.

Mentoring Operating System (MentOS) Fundamental concepts 17 / 35



Context switch (Overview)

Every time CPU changes privilege level, a context switch occurs!

Example of events making CPU change execution mode:
A mouse click, type of a character on the keyboard, a system

call...

User

Excp

User

Intr

User
User Mode

Kernel Mode

Time

How many times does the CPU change execution mode when a
user
presses a key of the keyboard?

Mentoring Operating System (MentOS) Fundamental concepts 18 / 35



Fundamental concepts

Programmable Interrupt Controller (PIC)

Mentoring Operating System (MentOS) Fundamental concepts 19 / 35



Programmable Interrupt Controller (PIC)

8259
PIC

CPU

INTR
IRQ#

ACK

IRQ_0
timer

IRQ_1 keyboard

IRQ_ ...

16 IRQ lines, numbered
I from 0 (highest

priority)
I to 15 (lowest priority)

Why do we have a timer
in IRQ_0?

A programmable interrupt controller is a
components combining several interrupt
requests onto one or more CPU lines.
Example of interrupt request:
I a key on the keyboard is pressed
I PIC rises INTR line and presents

IRQ_1 to CPU
I CPU jumps into Kernel mode to

handle the interrupt request
I CPU reads from the keyboard the

key pressed
I CPU sends back ACK to notify

that IRQ_1 was handled
I CPU jumps back to User mode

Mentoring Operating System (MentOS) Fundamental concepts 20 / 35



IRQ_0, Timer!

The timer is a hardware component aside the CPU. At a fixed
frequency, the timer rises a signal connected to the IRQ_0 of PIC.

Time

User

Kernel

User

Kernel

User

Kernel

User

Kernel

Timer

User Mode

Kernel Mode

Linux fixes the timer frequency to 100 Hz. The CPU runs a user
process for maximum 10 milliseconds, afterwards Kernel has back
the control of CPU.

Mentoring Operating System (MentOS) Fundamental concepts 21 / 35



Fundamental concepts

Memory organization

Mentoring Operating System (MentOS) Fundamental concepts 22 / 35



Memory organization (32-bit system)

kernel addresses

user addresses

0xFFFFFFFF

0xC0000000

0x00000000

Figure: Kernel and User
space.

The Kernel applies Virtual Memory to
maps virtual addresses to physical
addresses.

RAM is virtually split in Kernel space
(1GB) and User space (3GB).

CPU in Ring 0 has visibility of the
whole RAM.

CPU in Ring 3 has visibility of User
space only.

Mentoring Operating System (MentOS) Fundamental concepts 23 / 35



Folder Structure

Mentoring Operating System (MentOS) Fundamental concepts 24 / 35



Folder Structure (1/3)

MentOs (root):
I doc : MentOs documentation.
I files : List of files visible from inside the OS, once executed.
I initscp : Program to prepare the filesystem.
I third_party : Assembly compiler (NASM).
I mentos : The source code of the operating system.

I inc : Headers.
I src : Source codes.

Mentoring Operating System (MentOS) Fundamental concepts 25 / 35



Folder Structure (2/3)

src/inc:
I descriptor_tables : Descriptor tables (GDT, LDT, and IDT);
I devices : FPU;
I drivers : Mouse, Keyboard, ATA;
I elf : dealing with executables (ELF);
I fs : filesystem in general (VFS, INITRD);
I hardware : PIC8259, Timer;
I io : Memory Mapped and Port IOs, and Video;
I ui : Shell and its commands;

Mentoring Operating System (MentOS) Fundamental concepts 26 / 35



Folder Structure (3/3)

src/inc:
I libc : General data structures and functions;
I mem : Memory management (Paging, heap, buddy system,

zones);
I process : Processes and Scheduler;
I sys : System data structures and functions (System Call

user-side);
I system : System Call mechanism;

Mentoring Operating System (MentOS) Fundamental concepts 27 / 35



Kernel doubly-linked list

Mentoring Operating System (MentOS) Fundamental concepts 28 / 35



Circular, doubly-linked list (1/7)
Introduction

Operating system kernels, like many other programs, often need to
maintain lists of data structures. To reduce the amount of
duplicated code, the kernel developers have created a standard
implementation of circular, doubly-linked lists.

Pros:
I Safer/quicker than own ad-hoc implementation.
I Comes with several ready functions.

Cons:
I Pointer manipulation can be tricky.

Mentoring Operating System (MentOS) Fundamental concepts 29 / 35



Circular, doubly-linked list (2/7)
Definition

To use the list mechanism kernel developers defined the list_head
data structure as follow:
typedef struct list_head {

struct list_head *next, *prev;
} list_head_t;

A list_head represent a node of a list!

Mentoring Operating System (MentOS) Fundamental concepts 30 / 35



Circular, doubly-linked list (3/7)
Usage

To use the Linux list facility, we need only embed a list_head
inside the structures that make up the list.
struct mystruct {

//...
list_head_t list;
//...

};

The instances of mystruct can now be linked to create a
doubly-linked list!

mystruct {
// ...

// ...
}

mystruct {
// ...

// ...
}

mystruct {
// ...

// ...
}

list:
next

prev

list:
next

prev

list:
next

prev

Mentoring Operating System (MentOS) Fundamental concepts 31 / 35



Circular, doubly-linked list (4/7)
Mechanism in Detail

The head of the list must be a standalone list_head_t structure.
list_head_t list;
struct mystruct {

//...
list_head_t list;
//...

};

mystruct {
// ...

// ...
}

mystruct {
// ...

// ...
}

mystruct {
// ...

// ...
}

list:
next

prev

list:
next

prev

list:
next

prev

list:
next

prev

head list

The head is always present in a circular, doubly-linked list!
If a list is empty, then only its head exists!

Mentoring Operating System (MentOS) Fundamental concepts 32 / 35



Circular, double-linked list (5/7)
Support functions (1/3)

Support functions to use with a circular, doubly-linked list.
I list_head_empty(list_head_t *head):

Returns a nonzero value if the given list is empty.
I list_head_add(list_head_t *new, list_head_t

*listnode):
This function adds the new entry immediately after the
listnode.

I list_head_add_tail(list_head_t *new, list_head_t
*listnode):
This function adds the new entry immediately before the
listnode.

I list_head_del(list_head_t *entry):
The given entry is removed from the list.

Mentoring Operating System (MentOS) Fundamental concepts 33 / 35



Circular, double-linked list (6/7)
Support functions (2/3)

I list_entry(list_head_t *ptr, type_of_struct,
field_name):
Returns the struct embedding a list_head. In detail:
I ptr is a pointer to a list_head_t;
I type_of_struct is the type name of the struct embedding a

list_head_t;
I field_name is the name of the pointed list_head_t within

the struct.

// Example showing how to get the first mystruct from a list
list_head_t *listptr = head.next;
struct mystruct *item = list_entry(listptr, struct mystruct, list);

mystruct {
// ...
// ...

// ...
// ...

}

list:
next

prev

list:
next

prev

listptr

offset of the variable list
from the start of mystruct

Retuned address:
listptr + offsetof(struct mystruct, list);

Mentoring Operating System (MentOS) Fundamental concepts 34 / 35



Circular, double-linked list (7/7)
Support functions (3/3)

I list_for_each(list_head_t *ptr, list_head_t *head):
Iterates over each item of a doubly-linked list. In detail:
I ptr is a free variable pointer of type list_head_t;
I head is a pointer to a doubly-linked list’s head node.

Starting from the first list’s item, at each call ptr is filled with
the address of the next item in the list until its head is
reached.

list_head_t *ptr;
struct mystruct *entry;
// Inter over each mystruct item in list
list_for_each(ptr, &head) {

entry = list_entry(ptr, struct mystruct, list);
// ...

}

Mentoring Operating System (MentOS) Fundamental concepts 35 / 35


	Computer Science : A recipe for FUN
	Mentoring Operating System (MentOS)
	Fundamental concepts
	Central Processing Unit (CPU)
	Programmable Interrupt Controller (PIC)
	Memory organization

	Folder Structure
	Kernel doubly-linked list

