
Operating systems
Real-Time Scheduling

Created by
Enrico Fraccaroli

enrico.fraccaroli@gmail.com

Operating systems Real-Time Scheduling 1 / 28

mailto:enrico.fraccaroli@gmail.com


Table of Contents

1. Real-Time Systems
1.1. Definition
1.2. Time consistency

2. Real-Time Policies
2.1. Priority and Niceness
2.2. Preemption
2.3. Policies Behaviour

3. Implementation Steps in MentOs

4. Backup Slides
4.1. Earliest Deadline First (EDF)
4.2. Rate Monotonic (RM)

Operating systems Real-Time Scheduling 2 / 28



Real-Time Systems

Operating systems Real-Time Scheduling 3 / 28



Real-Time Systems

Definition

Operating systems Real-Time Scheduling 4 / 28



Real-Time Operating Systems
Definition

Definition (Real-Time Operating System)
A real-time operating system (RTOS) is a time-bound system
which has well-defined, fixed time constraints.

We distinguish between:
I Soft RTOS: which can usually or generally meet a deadline;
I Hard RTOS: which can deterministically meet a deadline.

Furthermore, they are either:
1. Event-driven: system switches between tasks based on

priorities;
2. Time-sharing: system switches tasks based on clock

interrupts.
Operating systems Real-Time Scheduling 5 / 28



Real-Time Systems

Time consistency

Operating systems Real-Time Scheduling 6 / 28



Real-Time Operating Systems
Time consistency

In a RTOS, consistency over the amount of time it takes to
accept and complete an application’s task is of utmost
importance. The variability of this time-span is called “jitter”.

Loop Period

Lo
op

It
er

at
io

n

JitterDesired loop period

In hard RTOS, jitter is not acceptable, it destroys determinism.

Operating systems Real-Time Scheduling 7 / 28



Real-Time Policies

Operating systems Real-Time Scheduling 8 / 28



Real-Time Policies

In Linux there are three classes of processes (linux/include/linux/sched.h):
/// Scheduling Policies
#define SCHED_OTHER 0 ///< standard round-robin policy (time-sharing);
#define SCHED_FIFO 1 ///< a first-in, first-out policy (event-driven);
#define SCHED_RR 2 ///< a round-robin policy (event-driven).

Linux supports real-time scheduling out of the box.

P.S.: That’s true, but the only issue is that latencies may not satisfy the hard
real-time requirements of critical applications.
P.P.S.: If you look at the man page of sched_setscheduler system call, it
will give you more details about these policies.

Operating systems Real-Time Scheduling 9 / 28



Real-Time Policies

Priority and Niceness

Operating systems Real-Time Scheduling 10 / 28



Real-Time Policies
Priority and Niceness (1/2)

Going back to what we saw with MentOs, each process has a
sched_entity struct associated with it. Inside this struct we have
the prio field, with values ranging from 0 to 139, explained as
follows:
I 0 to 99 is the real-time “priority” range;
I 100 to 139 is the “niceness” range.

Both SCHED_FIFO and SCHED_RR have a prio ranging from 0 to 99.
While SCHED_OTHER, has no actual “priority” value, but it has a
“niceness” value ranging from 0 to 39 identified by a prio ranging
from 100 to 139.

It may sound confusing, but to put it simple, we use the same
variable to manage both priority and niceness, what changes is
the range.

Operating systems Real-Time Scheduling 11 / 28



Real-Time Policies
Priority and Niceness (2/2)

Numeric
Priority

Relative
Priority

Tasks
Nature

Time
Quantum

0
.
.
.
99

Highest
.
.
.
.

Real-Time
Tasks

200 ms
.
.
.
.

100 [nice: 0]
.
.
.

139 [nice: 39]

.

.

.

.
Lowest

Other
Tasks

.

.

.

.
20 ms

Time quantum: the maximum amount of contiguous CPU time
it may use before yielding the CPU to another process of the
same priority.

Operating systems Real-Time Scheduling 12 / 28



Real-Time Policies

Preemption

Operating systems Real-Time Scheduling 13 / 28



Real-Time Policies
Preemption (1/2)

All runnable processes have entries in the scheduler database. The
scheduler database is an array of 140 lists, one list for each
priority level.

The scheduler orders the processes on each priority level list by
placing the process that should:
I run next, at the head of the list;
I wait the longest, at the tail of the list.

Operating systems Real-Time Scheduling 14 / 28



Real-Time Policies
Preemption (2/2)

Preemptive Priority Scheduler
The scheduler updates the scheduler database, whenever an event
occurs. If a process in the database now has a higher priority
than that of the running process, the running process is
preempted and placed back into the scheduler database. Then,
the highest priority process is made the running process.

Let us go back at the priority lists...
When a process is placed into a priority list in the scheduler
database, it is placed at the tail of the list unless it has just been
preempted.
If it has just been preempted, the processes scheduling policy
determines whether it is inserted at the head (real-time scheduling
policy) or the tail (timeshare scheduling policy).

Operating systems Real-Time Scheduling 15 / 28



Real-Time Policies

Policies Behaviour

Operating systems Real-Time Scheduling 16 / 28



Real-Time Policies
Behaviour SCHED_FIFO

A SCHED_FIFO process runs until either it is blocked by an I/O
request, it is preempted by a higher priority process, or it calls
sched_yield.

Time

Priority

(T1

(T2

(T3)

T2)

T1)

Operating systems Real-Time Scheduling 17 / 28



Real-Time Policies
Behaviour SCHED_RR (1/2)

SCHED_RR is a simple enhancement of SCHED_FIFO, and the same
rules of SCHED_FIFO are applied. However, each process is only
allowed to run for a maximum time quantum.

We distinguish between two cases:
I If a SCHED_RR process has been running for a time period equal to

or longer than the time quantum, it will be put at the tail of the list
for its priority.

I A SCHED_RR process that has been preempted by a higher priority
process and subsequently resumes execution as a running process
will complete the unexpired portion of its round-robin time
quantum.

Operating systems Real-Time Scheduling 18 / 28



Real-Time Policies
Behaviour SCHED_RR (2/2)

Time

Priority

(T1

(T2)

T1) (T3)

1 2 3 4

...

...

1

...

...

2

...

...

3

...

...

4

T1 T3
T2

T1 T3 T1 T3 T3

Operating systems Real-Time Scheduling 19 / 28



Implementation Steps in MentOs

Operating systems Real-Time Scheduling 20 / 28



Implementation Steps

Before implementing the real algorithm we need to extend the
data-structures of MentOs, to manage the whole mechanism.

First, you need to get accustomed with the list_head data
structure. It is used to manage arrays inside the kernel. The
following guide contains the section Kernel doubly-linked list,
which explains how the list_head works:
https://mentos-team.github.io/MentOS/doc/fundamental_
concepts.pdf

These lists are required to build the 140 lists array of the scheduler.

Operating systems Real-Time Scheduling 21 / 28

https://mentos-team.github.io/MentOS/doc/fundamental_concepts.pdf
https://mentos-team.github.io/MentOS/doc/fundamental_concepts.pdf


Implementation Steps

Second, I would suggest checking what the struct sched_entity
contains:
struct sched_entity {

int prio; // priority
time_t start_runtime; // start execution time
time_t exec_start; // last context switch time
time_t sum_exec_runtime; // overall execution time
time_t vruntime; // weighted execution time

}

and how its fields are updated.

Operating systems Real-Time Scheduling 22 / 28



Implementation Steps

Third, I would suggest checking the content of
mentos/inc/process/prio.h.
#define MAX_NICE +19
#define MIN_NICE -20
#define NICE_WIDTH (MAX_NICE - MIN_NICE + 1)

#define MAX_RT_PRIO 100
#define MAX_PRIO (MAX_RT_PRIO + NICE_WIDTH)
#define DEFAULT_PRIO (MAX_RT_PRIO + NICE_WIDTH / 2)

#define NICE_TO_PRIO(nice) ((nice) + DEFAULT_PRIO)
#define PRIO_TO_NICE(prio) ((prio)-DEFAULT_PRIO)

#define USER_PRIO(p) ((p)-MAX_RT_PRIO)

static const int prio_to_weight[NICE_WIDTH];

and check the sys_vfork function to see how the
new_process->se.prio is initialized.

Operating systems Real-Time Scheduling 23 / 28



Backup Slides

Operating systems Real-Time Scheduling 24 / 28



Backup Slides

Earliest Deadline First (EDF)

Operating systems Real-Time Scheduling 25 / 28



Earliest Deadline First (EDF)

Burst Time Deadline Period

T1 3 7 20
T2 2 4 5
T3 2 8 10

Time

Tasks

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
T1

T2

T3

7 20

4 5 9 10 14 15 19 20

8 10 18 20

T2

T1

T3

T2 T2

T3

T2

Operating systems Real-Time Scheduling 26 / 28



Earliest Deadline First (EDF)

Burst Time Deadline Period

T1 3 7 20
T2 2 4 5
T3 2 8 10

Time

Tasks

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
T1

T2

T3

7 20

4 5 9 10 14 15 19 20

8 10 18 20

T2

T1

T3

T2 T2

T3

T2

Operating systems Real-Time Scheduling 26 / 28



Earliest Deadline First (EDF)

Burst Time Deadline Period

T1 3 7 20
T2 2 4 5
T3 2 8 10

Time

Tasks

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
T1

T2

T3

7 20

4 5 9 10 14 15 19 20

8 10 18 20

T2

T1

T3

T2 T2

T3

T2

Operating systems Real-Time Scheduling 26 / 28



Earliest Deadline First (EDF)

Burst Time Deadline Period

T1 3 7 20
T2 2 4 5
T3 2 8 10

Time

Tasks

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
T1

T2

T3

7 20

4 5 9 10 14 15 19 20

8 10 18 20

T2

T1

T3

T2 T2

T3

T2

Operating systems Real-Time Scheduling 26 / 28



Earliest Deadline First (EDF)

Burst Time Deadline Period

T1 3 7 20
T2 2 4 5
T3 2 8 10

Time

Tasks

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
T1

T2

T3

7 20

4 5 9 10 14 15 19 20

8 10 18 20

T2

T1

T3

T2

T2

T3

T2

Operating systems Real-Time Scheduling 26 / 28



Earliest Deadline First (EDF)

Burst Time Deadline Period

T1 3 7 20
T2 2 4 5
T3 2 8 10

Time

Tasks

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
T1

T2

T3

7 20

4 5 9 10 14 15 19 20

8 10 18 20

T2

T1

T3

T2 T2

T3

T2

Operating systems Real-Time Scheduling 26 / 28



Earliest Deadline First (EDF)

Burst Time Deadline Period

T1 3 7 20
T2 2 4 5
T3 2 8 10

Time

Tasks

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
T1

T2

T3

7 20

4 5 9 10 14 15 19 20

8 10 18 20

T2

T1

T3

T2 T2

T3

T2

Operating systems Real-Time Scheduling 26 / 28



Earliest Deadline First (EDF)

Burst Time Deadline Period

T1 3 7 20
T2 2 4 5
T3 2 8 10

Time

Tasks

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
T1

T2

T3

7 20

4 5 9 10 14 15 19 20

8 10 18 20

T2

T1

T3

T2 T2

T3

T2

Operating systems Real-Time Scheduling 26 / 28



Backup Slides

Rate Monotonic (RM)

Operating systems Real-Time Scheduling 27 / 28



Rate Monotonic (RM)

Burst Time Period

T1 3 20
T2 2 5
T3 2 10

Time

Tasks

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
T1

T2

T3

20

5 10 15 20

10 20

T2

T3

T1

T2

T1

T2

T3

T2

Operating systems Real-Time Scheduling 28 / 28



Rate Monotonic (RM)

Burst Time Period

T1 3 20
T2 2 5
T3 2 10

Time

Tasks

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
T1

T2

T3

20

5 10 15 20

10 20

T2

T3

T1

T2

T1

T2

T3

T2

Operating systems Real-Time Scheduling 28 / 28



Rate Monotonic (RM)

Burst Time Period

T1 3 20
T2 2 5
T3 2 10

Time

Tasks

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
T1

T2

T3

20

5 10 15 20

10 20

T2

T3

T1

T2

T1

T2

T3

T2

Operating systems Real-Time Scheduling 28 / 28



Rate Monotonic (RM)

Burst Time Period

T1 3 20
T2 2 5
T3 2 10

Time

Tasks

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
T1

T2

T3

20

5 10 15 20

10 20

T2

T3

T1

T2

T1

T2

T3

T2

Operating systems Real-Time Scheduling 28 / 28



Rate Monotonic (RM)

Burst Time Period

T1 3 20
T2 2 5
T3 2 10

Time

Tasks

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
T1

T2

T3

20

5 10 15 20

10 20

T2

T3

T1

T2

T1

T2

T3

T2

Operating systems Real-Time Scheduling 28 / 28



Rate Monotonic (RM)

Burst Time Period

T1 3 20
T2 2 5
T3 2 10

Time

Tasks

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
T1

T2

T3

20

5 10 15 20

10 20

T2

T3

T1

T2

T1

T2

T3

T2

Operating systems Real-Time Scheduling 28 / 28



Rate Monotonic (RM)

Burst Time Period

T1 3 20
T2 2 5
T3 2 10

Time

Tasks

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
T1

T2

T3

20

5 10 15 20

10 20

T2

T3

T1

T2

T1

T2

T3

T2

Operating systems Real-Time Scheduling 28 / 28



Rate Monotonic (RM)

Burst Time Period

T1 3 20
T2 2 5
T3 2 10

Time

Tasks

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
T1

T2

T3

20

5 10 15 20

10 20

T2

T3

T1

T2

T1

T2

T3

T2

Operating systems Real-Time Scheduling 28 / 28


	Real-Time Systems
	Definition
	Time consistency

	Real-Time Policies
	Priority and Niceness
	Preemption
	Policies Behaviour

	Implementation Steps in MentOs
	Backup Slides
	Earliest Deadline First (EDF)
	Rate Monotonic (RM)


