
Operating systems
Interprocess communication (IPC)
Part 3 of 3: Signal, PIPE and FIFO

Created by
Enrico Fraccaroli

enrico.fraccaroli@gmail.com

Operating systems Signal, PIPE and FIFO 1 / 49

mailto:enrico.fraccaroli@gmail.com

Table of Contents

1. Signals
1.1. Fundamental concepts
1.2. Signal types
1.3. Signal handler
1.4. Sending a signal
1.5. Setting and blocking a signal

2. PIPEs
2.1. Fundamental concepts
2.2. Creating and using PIPEs

3. FIFOs (named PIPEs)
3.1. Fundamental concepts
3.2. Creating, opening, and using FIFOs

Operating systems Signal, PIPE and FIFO 2 / 49

Signals

Operating systems Signal, PIPE and FIFO 3 / 49

Signals

Fundamental concepts

Operating systems Signal, PIPE and FIFO 4 / 49

Fundamental concepts (1/2)

A signal is a notification to a process that an event has occurred.
They interrupt the normal flow of execution of a program; in most
cases, it is not possible to predict exactly when a signal will arrive.

A signal is said to be generated by some event. Once generated, a
signal is later delivered to a process. Between the time it is
generated and the time it is delivered, a signal is said to be
pending.

Normally, a pending signal is delivered to a process as soon as it is
next scheduled to run, or immediately if the process is already
running.

Operating systems Signal, PIPE and FIFO 5 / 49

Fundamental concepts (2/2)

Upon delivery of a signal, a process carries out one of the following
default actions, depending on the signal:
I The process is terminated (killed).
I The process is suspended (stopped).
I The process is resumed after previously being stopped.
I The signal is ignored. It is discarded by the kernel and has no

effect on the process. (The process never even knows that it
occurred.)

I The process executes a signal handler, namely a function
written by the programmer that performs appropriate tasks in
response to the delivery of a signal.

Operating systems Signal, PIPE and FIFO 6 / 49

Signals

Signal types

Operating systems Signal, PIPE and FIFO 7 / 49

Signal Types and Default Actions (1/3)

Signals to terminate a process:
I SIGTERM is delivered to safely terminate a process. A

well-designed application should have a handler for SIGTERM
that causes the application to exit gracefully.

I SIGINT terminates a process (“interrupt process"). It is sent
when the user type Contr-C character.

I SIGQUIT terminates a process and causes it to produce a
core dump, which can then be used for debugging.

I SIGKILL terminates a process (always!). It can’t be blocked,
ignored, or caught by a handler.

Signals to stop and resume a process:
I SIGSTOP stops a process (always!). It can’t be blocked,

ignored, or caught by a handler.
I SIGCONT resumes a previously stopped process.

Operating systems Signal, PIPE and FIFO 8 / 49

Signal Types and Default Actions (2/3)

Other import signals:
I SIGPIPE is generated when a process tries to write to a

PIPE, a FIFO for which there is no corresponding reader
process (see chapter PIPE/FIFO).

I SIGALRM is delivered to a process upon the expiration of a
real-time timer set by a call to alarm (see next slides).

I SIGUSR1 and SIGUSR2 are available for
programmer-defined purposes. The kernel never generates
these signals for a process.

The complete list of available signals in Linux can be retrieved with
the bash command “man 7 signal”.

Operating systems Signal, PIPE and FIFO 9 / 49

Signal Types and Default Actions (3/3)

name number can be caught? default action
SIGTERM 15 yes terminates a process
SIGINT 2 yes terminates a process
SIGQUIT 3 yes dumps + terms a process
SIGKILL 9 no terminates a process
SIGSTOP 17 no stops a process
SIGCONT 19 yes resumes a stopped process
SIGPIPE 13 yes terminates a process
SIGALRM 14 yes terminates a process
SIGUSR1 30 yes terminates a process
SIGUSR2 31 yes terminates a process

Column “number” reports the signal number for x86 and arm
architecture. A signal may have a different number in other
architectures

Operating systems Signal, PIPE and FIFO 10 / 49

“The real reason to not use sigkill” by Daniel Stori is licensed under CC BY-NC-SA
4.0.

Operating systems Signal, PIPE and FIFO 11 / 49

Signals

Signal handler

Operating systems Signal, PIPE and FIFO 12 / 49

Signal handler

A signal handler (also called a signal catcher) is a function that is
called when a specified signal is delivered to a process. It has
always the following general form:
void sigHandler(int sig) {

/* Code for the handler */
}

This function returns nothing (void) and takes one integer
argument (sig). When the signal handler is invoked by the kernel,
sig is set to the signal number delivered to the process.

Typically, sig is used to determine which signal caused the handler
to be invoked when a same handler catches different types of
signals.

Operating systems Signal, PIPE and FIFO 13 / 49

Signal handler (execution)

Invocation of a signal handler may interrupt the main program flow
at any time. The kernel calls the signal handler, and when the
handler returns, execution of the program resumes at the point
where the handler interrupted it.

Main program

Start of program

Instruction m

Instruction m+1

exit()

Signal handler

Start of handler

return

1
Delivery

of a signal

2
Kernel calls
signal handler

3
Program resumes at

point of interruption

Operating systems Signal, PIPE and FIFO 14 / 49

Changing signal dispositions (1/2)

The signal system call changes the default signal-handler for a
defined signal in a process.
#include <signal.h>

typedef void (*sighandler_t)(int);
// Returns previous signal disposition on success, or SIG_ERR on error
sighandler_t signal(int signum, sighandler_t handler);

signum identifies the signal whose disposition we wish to change in
the process. handler can be one of the following:
I the address of a user-defined signal handler.
I the constant SIG_DFL, which resets the default disposition of

the process for the signal signum.
I the constant SIG_IGN, which sets the process to ignore the

delivery
of the signal signum.

Operating systems Signal, PIPE and FIFO 15 / 49

Changing signal dispositions (2/2)

void sigHandler(int sig) {
printf("The signal %s was caught!\n",

(sig == SIGINT)? "Ctrl-C" : "signal User-1");
}
int main (int argc, char *argv[]) {

// setting sigHandler to be executed for SIGINT or SIGUSR1
if (signal(SIGINT, sigHandler) == SIG_ERR ||

signal(SIGUSR1, sigHandler) == SIG_ERR) {
errExit("change signal handler failed");

}
// Do something else here. During this time, if SIGINT/SIGUSR1
// is delivered, sigHandler will be used to handle the signal.
// Reset the default process disposition for SIGINT and SIGUSR1
if (signal(SIGINT, SIG_DFL) == SIG_ERR ||

signal(SIGUSR1, SIG_DFL) == SIG_ERR) {
errExit("reset signal handler failed");

}
return 0;

}

Operating systems Signal, PIPE and FIFO 16 / 49

Signal handler (important notes)

What you should keep in mind when you use signal handlers:
I SIGKILL and SIGSTOP cannot be caught.
I A signal is an asynchronous event. We cannot predict when it

arrives.
I When a signal handler is invoked, the signal that caused its

invocation is automatically blocked. It is unblocked when the
signal handler returns to the normal execution flow of the
program.

I If a blocked signal is generated several times, when unblocked,
it is delivered to the process only once!

I The execution of a signal handler can be interrupted by the
delivery of an unblocked signal.

I The signal dispositions are inherited between process parent
and process child.

Operating systems Signal, PIPE and FIFO 17 / 49

Waiting for a signal (1/2)

Calling pause suspends execution of the process until the call is
interrupted by a signal handler (or until an unhandled signal
terminates the process).
#include <unistd.h>
// Always return -1 with errno set to EINTR
int pause();

The sleep function suspends execution of the calling process for
the number of seconds specified in the seconds argument or until a
signal is
caught (thus interrupting the call).
#include <unistd.h>
// Returns 0 on normal completion, or number of
// unslept seconds if prematurely terminated
unsigned int sleep(unsigned int seconds);

Operating systems Signal, PIPE and FIFO 18 / 49

Waiting for a signal (2/2)

Waiting the interrupt signal (Ctrl-C), which must occur within 30
seconds
void sigHandler(int sig) { printf("Well done!\n"); }

int main (int argc, char *argv[]) {
if (signal(SIGINT, sigHandler) == SIG_ERR)

errExit("change signal handler failed");

int time = 30;
printf("We can wait for %d seconds!\n", time);
time = sleep(time); // the process is suspended for max. 30sec.
printf("%s!\n", (time==0)? "out of time", "just in time");

}

Operating systems Signal, PIPE and FIFO 19 / 49

Signals

Sending a signal

Operating systems Signal, PIPE and FIFO 20 / 49

Sending a signal (kill) (1/4)
The system call kill let a process send a signal to another process.
#include <signal.h>

// Returns 0 on success, or -1 on error
int kill(pid_t pid, int sig);

The pid argument identifies one or more processes to which the
signal specified by sig is to be sent.
I (pid > 0): the signal is sent to the process having PID equals

to pid.
I (pid = 0): the signal is sent to every process in the same

process group as the calling process, including the calling
process itself.

I (pid < 0): the signal is sent to all of the processes in the
process group whose ID equals the absolute value of pid.

I (pid = -1): the signal is sent to every process for which the
calling process has permission to send a signal, except init and
the process itself.

Operating systems Signal, PIPE and FIFO 21 / 49

Sending a signal (kill) (2/4)

Sending a SIGKILL signal to a child process
int main (int argc, char *argv[]) {

pid_t child = fork();
switch(child) {
case -1:

errExit("fork");
case 0: /* Child process */

while(1); // <- child is stuck here!
default: /* Parent process */

sleep(10); // wait 10 seconds
kill(child, SIGKILL); // kill the child process

}
return 0;

}

Operating systems Signal, PIPE and FIFO 22 / 49

Sending a signal (alarm) (3/4)

The alarm system call arranges for a SIGALRM signal to be
delivered to the calling process after a fixed delay.
#include <signal.h>

// Always succeeds, returning number of seconds remaining on
// any previously set timer, or 0 if no timer previously was set
unsigned int alarm(unsigned int seconds);

I The seconds argument specifies the number of seconds in the
future when the timer is to expire. At that time, a SIGALRM
signal is delivered to the calling process.

I Setting a timer with alarm overrides any previously set timer.

Operating systems Signal, PIPE and FIFO 23 / 49

Sending a signal (alarm) (4/4)

Setting a timer with the alarm system call.
void sigHandler(int sig) { printf("Out of time!\n"); _exit(0); }

int main (int argc, char *argv[]) {
if (signal(SIGALRM, sigHandler) == SIG_ERR)

errExit("change signal handler failed");

int time = 30;
printf("We have %d seconds to complete the job!\n", time);
alarm(time); // setting a timer

/* Do something else here. */

time = alarm(0); // disabling timer
printf("%s seconds before timer expirations!\n", time);
return 0;

}

Operating systems Signal, PIPE and FIFO 24 / 49

Signals

Setting and blocking a signal

Operating systems Signal, PIPE and FIFO 25 / 49

Signal set (1/2)

The sigset_t data type represents a signal set. The functions
sigemptyset and sigfillset must be used to initialize a signal set,
before using it in any other way.
#include <signal.h>

typedef unsigned long sigset_t;

// Both return 0 on success, or -1 on error.
int sigemptyset(sigset_t *set);
int sigfillset(sigset_t *set);

sigemptyset initializes a signal set to contain no signal.
sigfillset initializes a set to contain all signals.

Operating systems Signal, PIPE and FIFO 26 / 49

Signal set (2/2)

After initialization, individual signals can be added to a set using
sigaddset and removed using sigdelset.
#include <signal.h>

// Both return 0 on success, or -1 on error
int sigaddset(sigset_t *set, int sig);
int sigdelset(sigset_t *set, int sig);

For both sigaddset and sigdelset, the sig argument is a signal
number.

The sigismember function is used to test for membership of a set.
#include <signal.h>

// Returns 1 if sig is a member of set, otherwise 0
int sigismember(const sigset_t *set, int sig);

Operating systems Signal, PIPE and FIFO 27 / 49

Blocking signal delivery (1/3)

For each process, the kernel maintains a signal mask, namely a set
of signals whose delivery to the process is currently blocked. If a
signal that is blocked is sent to a process, delivery of that signal is
delayed until it is unblocked by being removed from the process
signal mask.

The sigprocmask system call can be used at any time to explicitly
add signals to, and remove signals from, the signal mask.
#include <signal.h>

// Returns 0 on success, or -1 on error
int sigprocmask(int how, const sigset_t *set, sigset_t *oldset);

Operating systems Signal, PIPE and FIFO 28 / 49

Blocking signal delivery (2/3)

The how argument determines the changes that sigprocmask
makes to the signal mask:
I SIG_BLOCK The set of blocked signals is the union of the

current set and the set argument.
I SIG_UNBLOCK The signals in set argument are removed

from the current set of blocked signals. It is permissible to
attempt to unblock a signal which is not blocked.

I SIG_SETMASK The set of blocked signals is set to the
argument set.

In each case, if the oldset argument is not NULL, it points to a
sigset_t buffer that is used to return the previous signal mask.
If we want to retrieve the signal mask without changing it, then we
can specify NULL for the set argument, in which case the how
argument is ignored.

Operating systems Signal, PIPE and FIFO 29 / 49

Blocking signal delivery (3/3)

Blocking all signals but SIGTERM.
int main (int argc, char *argv[]) {

sigset_t mySet, prevSet;
// initialize mySet to contain all signals
sigfillset(&mySet);
// remove SIGTERM from mySet
sigdelset(&mySet, SIGTERM);
// blocking all signals but SIGTERM
sigprocmask(SIG_SETMASK, &mySet, &prevSet);

/* Code that shouldn’t be interrupted by signals but SIGTERM */

// reset the signal mask of the process
sigprocmask(SIG_SETMASK, &prevSet, NULL);
// if SIGTERM is pending, only at this point it is
// delivered to the process
return 0;

}

Operating systems Signal, PIPE and FIFO 30 / 49

PIPEs

Operating systems Signal, PIPE and FIFO 31 / 49

PIPEs

Fundamental concepts

Operating systems Signal, PIPE and FIFO 32 / 49

Fundamental concepts (1/2)

Unidirectional
bytes stream

data direction

Write end
of pipe

Read end
of pipe

A PIPE is a byte stream (technically speaking, it is a buffer in
kernel memory), which allows processes to exchange bytes.
A PIPE has the following properties:
I it is unidirectional. Data travels only in one direction through

a PIPE. One end of the PIPE is used for writing, the other
one for reading;

I data passes through the PIPE sequentially. Bytes are read
from a PIPE in exactly the order they were written;

I no concept of messages, or message boundaries. The process
reading from a PIPE can read blocks of data of any size,
regardless of the
size of blocks written by the writing process.

Operating systems Signal, PIPE and FIFO 33 / 49

Fundamental concepts (2/2)

I Attempts to read from an empty PIPE blocks the reader until,
either at least one byte has been written to the PIPE, or a
no-terminating signal occurs (errno EINTR).

I If the write-end of a PIPE is closed, then a process reading
from the PIPE will see end-of-file once it has read all
remaining data in the PIPE.

I A write is blocked until, either sufficient space is available to
complete the operation atomically1, or a no-terminating signal
occurs (errno EINTR).

I Writes of data blocks larger than PIPE_BUF2 bytes may be
broken into segments of arbitrary size (which may be smaller
than PIPE_BUF bytes).

1On Linux, pipe capacity is 65536 bytes
2On Linux, PIPE_BUF has the value 4096 bytes

Operating systems Signal, PIPE and FIFO 34 / 49

PIPEs

Creating and using PIPEs

Operating systems Signal, PIPE and FIFO 35 / 49

Creating and using PIPEs (1/3)
The pipe system call creates a new PIPE.
#include <unistd.h>

// Returns 0 on success, or -1 on error
int pipe(int filedes[2]);

A successful call to pipe returns two open file descriptors in the
array filedes.
I filedes[0] stores the read-end of the PIPE.
I filedes[1] stores the write-end of the PIPE.

As with any file descriptor, we can use the read and write system
calls to perform I/O on the PIPE.

Normally, we use a PIPE to allow communication among related
processes. To connect two processes using a PIPE, we follow the
pipe call with a call to fork.

Operating systems Signal, PIPE and FIFO 36 / 49

Creating and using PIPEs (2/3)

int fd[2];
// checking if PIPE successed
if (pipe(fd) == -1)

errExit("PIPE");
// Create a child process
switch(fork()) {

case -1:
errExit("fork");

case 0: // Child
//...child reads from PIPE
// (next slide)
break;

default: // Parent
//...parent writes to PIPE
// (next slide)
break;

}

1. pipe(...) creates a new PIPE.
fd[0] is the read-end of the PIPE.
fd[1] is the write-end of the PIPE.

2. fork() creates a child process,
which inherits the file descriptor
table of the parent process.

data direction

Parent process

fd[1] fd[0]

Child process
fd[1] fd[0]

Operating systems Signal, PIPE and FIFO 37 / 49

Creating and using PIPEs (3/3)

case 0: // child reads from PIPE
char buf[SIZE];
ssize_t nBys;

// close unused write-end
if (close(fd[1]) == -1)

errExit("close - child");
// reading from the PIPE
nBys = read(fd[0], buf, SIZE);
// 0: end-of-file, -1: failure
if (nBys > 0) {

buf[nBys] = ’\0’;
printf("%s\n", buf);

}
// close read-end of PIPE
if (close(fd[0]) == -1)

errExit("close - child");

default: // parent writes to PIPE
char buf[] = "Ciao Mondo\n";
ssize_t nBys;

// close unused read-end
if (close(fd[0]) == -1)

errExit("close - parent");
// write to the PIPE
nBys = write(fd[1], buf, strlen(buf));
// checkig if write successed
if (nBys != strlen(buf)) {

errExit("write - parent");
}

// close write-end of PIPE
if (close(fd[1]) == -1)

errExit("close - child");

Operating systems Signal, PIPE and FIFO 38 / 49

Good and bad practice

“Hello world!”

Parent process

fd[1] ← “Hello world!”

Child process
“Hello world!” ← fd[0]

Why should we close the unused PIPE file descriptor?
What problem may we have?

Operating systems Signal, PIPE and FIFO 39 / 49

Creating and using PIPEs - Wrong! (1/2)

case 0: // child reads from PIPE
// close unused write-end
//if (close(fd[1]) == -1)
// errExit("close - child");

char buf[SIZE];
ssize_t nBys;
// reading from the PIPE
nBys = read(fd[0], buf, SIZE);
// 0: end-of-file, -1: failure
if (nBys > 0)

printf("%s\n", buf);

// close read-end of PIPE
if (close(fd[0]) == -1)

errExit("close - child");

default: // parent writes to PIPE
// close unused read-end
if (close(fd[0]) == -1)

errExit("close - parent");

// ...nothing to send

// close write-end of PIPE
if (close(fd[1]) == -1)

errExit("close - child");

Why is this program wrong?
Advice: the reading process is
waiting for data...

Operating systems Signal, PIPE and FIFO 40 / 49

Creating and using PIPEs - Wrong! (2/2)

case 0: // child reads from PIPE
// close unused write-end
if (close(fd[1]) == -1)

errExit("close - child");

// ...nothing to read

// close read-end of PIPE
if (close(fd[0]) == -1)

errExit("close - child");

Why is this program wrong?
Advice: Whoam the writing
process is sending data to?
(SIGPIPE, errno EPIPE)

default: // parent writes to PIPE
// close unused read-end
//if (close(fd[0]) == -1)
// errExit("close - parent");

char buf[] = "Ciao Mondo\n";
size_t len = strlen(buf);
// write to the PIPE
nBys = write(fd[1], buf, len);
// checkig if write successed
if (nBys != len)

errExit("write - parent");

// close write-end of PIPE
if (close(fd[1]) == -1)

errExit("close - child");

Operating systems Signal, PIPE and FIFO 41 / 49

FIFOs (named PIPEs)

Operating systems Signal, PIPE and FIFO 42 / 49

FIFOs (named PIPEs)

Fundamental concepts

Operating systems Signal, PIPE and FIFO 43 / 49

Fundamental concepts

A FIFO is a byte stream (technically speaking, it is a buffer in
kernel memory), which allows processes to exchange bytes.
Semantically, a FIFO is similar to a PIPE.

The principal difference between PIPEs and FIFOs is that a FIFO
has a name within the file system, and is opened and deleted in the
same way as a regular file. This allows a FIFO to be used for
communication between unrelated processes.

Just as with PIPEs, a FIFO has a write-end and a read-end, and
data is read from the FIFO in the same order as it is written.

Operating systems Signal, PIPE and FIFO 44 / 49

FIFOs (named PIPEs)

Creating, opening, and using FIFOs

Operating systems Signal, PIPE and FIFO 45 / 49

Creating a FIFO

The mkfifo system call creates a new FIFO.
#include <unistd.h>

// Returns 0 on success, or -1 on error
int mkfifo(const char *pathname, mode_t mode);

The pathname parameter specifies where the FIFO is created. As
a normal file, the mode parameter specifies the permissions for the
FIFO (see chapter file system, system call open).

Once a FIFO has been created, any process can open it.

Operating systems Signal, PIPE and FIFO 46 / 49

Opening a FIFO (1/2)

The open system call open a FIFO.
#include <unistd.h>

// Returns file descriptor on success, or -1 on error.
int open(const char *pathname, int flags);

The pathname parameter specifies the location of the FIFO in the
file system. The flags argument is a bit mask of one of the
following constants that specifies the access mode for the FIFO.

Flag Description
O_RDONLY Open for reading only
O_WRONLY Open for writing only

Operating systems Signal, PIPE and FIFO 47 / 49

Opening a FIFO (2/2)

The only sensible use of a FIFO is to have a reading process and a
writing process on each end.

By default, opening a FIFO for reading (O_RDONLY flag) blocks
until another process opens the FIFO for writing (O_WRONLY
flag). Conversely, opening the FIFO for writing blocks until
another process opens the FIFO for reading. In other words,
opening a FIFO synchronizes the reading and writing processes.

If the opposite end of a FIFO is already open (perhaps because a
pair of processes have already opened each end of the FIFO), then
open succeeds immediately.

Operating systems Signal, PIPE and FIFO 48 / 49

Creating and using a FIFO

Receiver
char *fname = "/tmp/myfifo";
int res = mkfifo(fname, S_IRUSR|S_IWUSR);
// Opening for reading only
int fd = open(fname, O_RDONLY);

// reading bytes from fifo
char buffer[LEN];
read(fd, buffer, LEN);

// Printing buffer on stdout
printf("%s\n", buffer);

// closing the fifo
close(fd);

// Removing FIFO
unlink(fname);

Sender
char *fname = "/tmp/myfifo";

// Opening for wringing only
int fd = open(fname, O_WRONLY);

//reading a str. (no spaces)
char buffer[LEN];
printf("Give me a string: ");
scanf("%s", buffer);

// writing the string on fifo
write(fd, buffer, strlen(buffer));

// closing the fifo
close(fd);

Statements checking errors were omitted due to lack of space.

Operating systems Signal, PIPE and FIFO 49 / 49

	Signals
	Fundamental concepts
	Signal types
	Signal handler
	Sending a signal
	Setting and blocking a signal

	PIPEs
	Fundamental concepts
	Creating and using PIPEs

	FIFOs (named PIPEs)
	Fundamental concepts
	Creating, opening, and using FIFOs

