
Operating systems
Interprocess communication (IPC)

Part 2 of 3: Shared Memory and Message Queue

Created by
Enrico Fraccaroli

enrico.fraccaroli@gmail.com

Operating systems Shared Memory and Message Queue 1 / 44

mailto:enrico.fraccaroli@gmail.com


Table of Contents

1. Shared memory
1.1. Fundamental concepts
1.2. Creating and Opening
1.3. Attaching a segment

2. Message Queue
2.1. Creating and Opening
2.2. The message structure
2.3. Sending a message
2.4. Receiving a message
2.5. Control operations

3. Conclusive Overview of System V IPC interfaces

Operating systems Shared Memory and Message Queue 2 / 44



Shared memory

Operating systems Shared Memory and Message Queue 3 / 44



Shared memory

Fundamental concepts

Operating systems Shared Memory and Message Queue 4 / 44



Fundamental concepts

A shared memory is a memory segment of physical memory
managed by Kernel, which allows two or more processes to
exchange data.
Once attached, even more then once, the shared memory is part
of the process’s virtual address space, and no kernel
intervention is required.

Data written in a shared memory is immediately available to all
other process sharing the same segment. Typically, some method
of synchronization is required so that processes don’t
simultaneously access the shared memory (for instance,
semaphores!).

Operating systems Shared Memory and Message Queue 5 / 44



Fundamental concepts

argv, environ

Memory layout
process P1

Stack
↓

Memory reserved
for Stack

Memory reserved
for Memory Mapping

Memory reserved
for Heap

↑
Heap

Uninitialized data
(bss)

Initialized data
(data)

Program code
(text)

Share memory segment
managed by Kernel

argv, environ

Memory layout
process P2

Stack
↓

Memory reserved
for Stack

Memory reserved
for Memory Mapping

Memory reserved
for Heap

↑
Heap

Uninitialized data
(bss)

Initialized data
(data)

Program code
(text)

0x40000000

0xBED00000

Operating systems Shared Memory and Message Queue 6 / 44



Shared memory

Creating and Opening

Operating systems Shared Memory and Message Queue 7 / 44



Creating/Opening a shared memory segment

The shmget system call creates a new shared memory segment or
obtains the identifier of an existing one. The content of a newly
created shared memory segment is initialized to 0.
#include <sys/shm.h>

// Returns a shared memory segment identifier on success, or -1 on error
int shmget(key_t key, size_t size, int shmflg);

The key arguments are:
I an IPC key.
I size specifies the desired size 1 of the of segment, in bytes.
I if we are using shmget to obtain the identifier of an existing

segment, then size has no effect on the segment, but it must
be less than or equal to the size of the segment.

1size is rounded up to the next multiple of the system page size
Operating systems Shared Memory and Message Queue 8 / 44



Creating/Opening a shared memory segment

shmflg is a bit mask specifying the permissions (see open(...)
system call, mode argument) to be places on a new shared memory
segment or checked against an existing segment. In additions, the
following flags can be ORed (|) in shmflg:
I IPC_CREAT: If no segment with the specified key exists, create

a new segment
I IPC_EXCL: in conjunction with IPC_CREAT, it makes shmget

fail if a segment exists with the specified key.

Operating systems Shared Memory and Message Queue 9 / 44



Creating/Opening a shared memory segment

Example showing how to create a shared memory segment
int shmid;
ket_t key = //... (generate a key in some way, i.e. with ftok)
size_t size = //... (compute size value in some way)

// A) delegate the problem of finding a unique key to the kernel
shmid = shmget(IPC_PRIVATE, size, S_IRUSR | S_IWUSR);

// B) create a shared memory with identifier key, if it doesn’t already exist
shmid = shmget(key, size, IPC_CREAT | S_IRUSR | S_IWUSR);

// C) create a shared memory with identifier key, but fail if it exists already
shmid = shmget(key, size, IPC_CREAT | IPC_EXCL | S_IRUSR | S_IWUSR);

Operating systems Shared Memory and Message Queue 10 / 44



Shared memory

Attaching a segment

Operating systems Shared Memory and Message Queue 11 / 44



Attaching a shared memory segment

The shmat system call attaches the shared memory segment
identified by shmid to the calling process’s virtual address space.
#include <sys/shm.h>

// Returns address at which shared memory is attached on success
// or (void *)-1 on error
void *shmat(int shmid, const void *shmaddr, int shmflg);

I shmaddr NULL: the segment is attached at a suitable address
selected by the kernel (shmaddr and shmflg are ignored)

I shmaddr not NULL:
the segment is attached at shmaddr address (, but if also)
I shmflg SHM_RND: shmaddr is rounded down to the nearest

multiple of the constant SHMLBA (shared memory low boundary
address)

Operating systems Shared Memory and Message Queue 12 / 44



Attaching a shared memory segment

Normally, shmaddr is NULL, for the following reasons:
I It increases the portability of an application. An address valid

on one UNIX implementation may be invalid on another.
I An attempt to attach a shared memory segment at a

particular address will fail if that address is already in use.
In addition to SHM_RND, the flag SHM_RDONLY can be specified for
attaching a the shared memory for reading only. If shmflg has
value zero, the shared memory is attached in read and write mode.

A child process inherits its parent’s attached shared memory
segments. Shared memory provides an easy method of IPC
between parent and child!

Operating systems Shared Memory and Message Queue 13 / 44



Attaching a shared memory segment

Example showing how to attach a shared memory segment (twice)2

// attach the shared memory in read/write mode
int *ptr_1 = (int *)shmat(shmid, NULL, 0);
// attach the shared memory in read only mode
int *ptr_2 = (int *)shmat(shmid, NULL, SHM_RDONLY);
// N.B. ptr_1 and ptr_2 are different!
// But they refer to the same shared memory!
// write 10 integers to shared memory segment
for (int i = 0; i < 10; ++i)

ptr_1[i] = i;
// read 10 integers from shared memory segment
for (int i = 0; i < 10; ++i)

printf("integer: %d\n", ptr_2[i]);

What will code program print?
Can we use ptr_2 to write in the shared memory segment? Why?

2error checking statements were omitted
Operating systems Shared Memory and Message Queue 14 / 44



Detaching a shared memory segment

When a process no longer needs to access a shared memory
segment, it can call shmdt to detach the segment from its virtual
address space. The shmaddr argument identifies the segment to be
detached, and it is a value returned by a previous call to shmat.
#include <sys/shm.h>

// Returns 0 on success, or -1 on error
int shmdt(const void *shmaddr);

During an exec, all attached shared memory segments are
detached. Shared memory segments are also automatically
detached on process termination.

Operating systems Shared Memory and Message Queue 15 / 44



Detaching a shared memory segment

Example showing how to detach a shared memory segment
// attach the shared memory in read/write mode
int *ptr_1 = (int *)shmat(shmid, NULL, 0);
if (ptr_1 == (void *)-1)

errExit("first shmat failed");
// attach the shared memory in read only mode
int *ptr_2 = (int *)shmat(shmid, NULL, SHM_RDONLY);
if (ptr_2 == (void *)-1)

errExit("second shmat failed");
//...
// detach the shared memory segments
if (shmdt(ptr_1) == -1 || shmdt(ptr_2) == -1)

errExit("shmdt failed");

Operating systems Shared Memory and Message Queue 16 / 44



Shared memory control operations
The shmctl system call performs control operations on a shared
memory segment.
#include <sys/msg.h>

// Returns 0 on success, or -1 error
int shmctl(int shmid, int cmd, struct shmid_ds *buf);

The shmid argument is a shared memory identifier. The cmd
argument specifies the operation to be performed on the shared
memory:
I IPC_RMID: Mark for deletion the shared memory. The segment

is removed as soon as all processes have detached from it
I IPC_STAT: Place a copy of the shmid_ds data structure

associated with this shared memory in the buffer pointed to
by buf

I IPC_SET: Update selected fields of the shmid_ds data
structure associated with this shared memory using values
provided in the
buffer pointed to by bufOperating systems Shared Memory and Message Queue 17 / 44



Shared memory control operations - Example

Example showing how to remove a shared memory segment
if (shmctl(shmid, IPC_RMID, NULL) == -1)

errExit("shmctl failed");
else

printf("shared memory segment removed successfully\n");

Operating systems Shared Memory and Message Queue 18 / 44



Shared memory control operations

For each shared memory segment the kernel has an associated
shmid_ds data structure of the following form:
struct shmid_ds {

struct ipc_perm shm_perm; /* Ownership and permissions */
size_t shm_segsz; /* Size of segment in bytes */
time_t shm_atime; /* Time of last shmat() */
time_t shm_dtime; /* Time of last shmdt() */
time_t shm_ctime; /* Time of last change */
pid_t shm_cpid; /* PID of creator */
pid_t shm_lpid; /* PID of last shmat() / shmdt() */
shmatt_t shm_nattch; // Number of currently attached

}; // processes

With IPC_STAT and IPC_SET we can respectively get and update3

this data structure.

3Only the field shm_perm can be modified
Operating systems Shared Memory and Message Queue 19 / 44



Message Queue

Operating systems Shared Memory and Message Queue 20 / 44



Message Queue

Creating and Opening

Operating systems Shared Memory and Message Queue 21 / 44



Creating/Opening a Message Queue

The msgget system call creates a new message queue, or obtains
the identifier of an existing queue.
#include <sys/msg.h>

// Returns message queue identifier on success, or -1 error
int msgget(key_t key, int msgflg);

The key argument is an IPC key, msgflg is a bit mask specifying
the permissions (see open(...) system call, mode argument) to be
places on a new message queue, or checked against an existing
queue. In additions, the following flags can be ORed (|) in msgflg:
I IPC_CREAT: If no message queue with the specified key exists,

create a new queue
I IPC_EXCL: in conjunction with IPC_CREAT, it makes msgget fail

if a queue exists with the specified key

Operating systems Shared Memory and Message Queue 22 / 44



Creating/Opening a Message Queue

Example showing how to create a message queue
int msqid;
ket_t key = //... (generate a key in some way, i.e. with ftok)

// A) delegate the problem of finding a unique key to the kernel
msqid = msgget(IPC_PRIVATE, S_IRUSR | S_IWUSR);

// B) create a queue with identifier key, if it doesn’t already exist
msqid = msgget(key, IPC_CREAT | S_IRUSR | S_IWUSR);

// C) create a queue with identifier key, but fail if it exists already
msqid = msgget(key, IPC_CREAT | IPC_EXCL | S_IRUSR | S_IWUSR);

Operating systems Shared Memory and Message Queue 23 / 44



Message Queue

The message structure

Operating systems Shared Memory and Message Queue 24 / 44



The message in a Message Queue

A message in a message queue always follows the following
structure:
struct mymsg {

long mtype; /* Message type */
char mtext[]; /* Message body */

};

The first part of a message contains the message type, specified as
a long integer greater than 0. The remainder of the message is a
programmer-defined structure of arbitrary length and content (it
is not necessary an array of char). Indeed, it can be omitted if
not needed.

Operating systems Shared Memory and Message Queue 25 / 44



Message Queue

Sending a message

Operating systems Shared Memory and Message Queue 26 / 44



Sending Messages

The msgsnd system call writes a message to a message queue.
#include <sys/msg.h>

// Returns 0 on success, or -1 error
int msgsnd(int msqid, const void *msgp, size_t msgsz, int msgflg);

I msqid argument is a message queue identifier
I msgp is an address pointing to a message structure
I msgsz specifies the number of bytes contained in the mtext

field of the message
I msgflg argument can be 0, or the flag IPC_NOWAIT.

I Normally, if a message queue is full, msgsnd blocks until
enough space has become available to allow the message to be
placed on the queue

I If IPC_NOWAIT is specified, msgsnd immediately returns with
error EAGAIN (i.e., there is no data available right now, try
again later)

Operating systems Shared Memory and Message Queue 27 / 44



Sending Messages - Example 1

// Message structure
struct mymsg {

long mtype;
char mtext[100]; /* array of chars as message body */

} m;
// message has type 1
m.mtype = 1;
// message contains the following string
char *text = "Ciao mondo!";
memcpy(m.mtext, text, strlen(text) + 1); // why +1 here?
// size of m is only the size of its mtext attribute!
size_t mSize = sizeof(struct mymsg) - sizeof(long);
// sending the message in the queue
if (msgsnd(msqid, &m, mSize, 0) == -1)

errExit("msgsnd failed");

Operating systems Shared Memory and Message Queue 28 / 44



Sending Messages - Example 2

// Message structure
struct mymsg {

long mtype;
int num1, num2; /* two integers as message body */

} m;
// message has type 2
m.mtype = 2;
// message contains the following numbers
m.num1 = 34;
m.num2 = 43;
// size of m is only the size of its mtext attribute!
size_t mSize = sizeof(struct mymsg) - sizeof(long);
// sending the message in the queue
if (msgsnd(msqid, &m, mSize, 0) == -1)

errExit("msgsnd failed");

Operating systems Shared Memory and Message Queue 29 / 44



Sending Messages - Example 3

// Message structure
struct mymsg {

long mtype;
/* The message has not got body. It has just a type!*/

} m;
// message has type 3
m.mtype = 3;
// size of m is only the size of its mtext attribute!
size_t mSize = sizeof(struct mymsg) - sizeof(long); // 0!
// sending the message in the queue
if (msgsnd(msqid, &m, mSize, IPC_NOWAIT) == -1) {

if (errno == EAGAIN) {
printf("The queue was full!\n");

} else {
errExit("msgsnd failed");

}
}

Operating systems Shared Memory and Message Queue 30 / 44



Message Queue

Receiving a message

Operating systems Shared Memory and Message Queue 31 / 44



Receiving Messages

The msgrcv system call reads and remove a message from a
message queue.
#include <sys/msg.h>

// Returns number of bytes copied into msgp on success, or -1 error
ssize_t msgrcv(int msqid, void *msgp, size_t msgsz, long msgtype, int msgflg);

The msqid argument is a message queue identifier. The maximum
space available in the mtext field of the msgp buffer is specified by
the argument msgsz.

Operating systems Shared Memory and Message Queue 32 / 44



Receiving Messages
The value in the msgtype field selects the message retrieved as
follow:
I if equal to 0, the first message from the queue is removed

and returned to the calling process.
I if greater than 0, the first message from the queue having

mtype equals to msgtype is removed and returned to the
calling process.

I if less than 0, the first message of the lowest mtype less than
or equal to the absolute value of msgtype is removed and
returned to the calling process.

Given the message definition: (mtype, char)
And the following queue:

{(300,’a’); (100,’b’); (200,’c’); (400,’d’); (100,’e’)}
A series of msgrcv calls with msgtype=-300 retrieve the messages:

(100,’b’), (100,’e’), (200,’c’), (300,’a’)
Operating systems Shared Memory and Message Queue 33 / 44



Receiving Messages

The msgflg argument is a bit mask formed by ORing together zero
or more of the following flags:

I IPC_NOWAIT: By default, if no message matching msgtype is in
the queue, msgrcv blocks until such a message becomes
available. Specifying the IPC_NOWAIT flag causes msgrcv to
instead return immediately with the error ENOMSG.

I MSG_NOERROR: By default, if the size of the mtext field of the
message exceeds the space available (as defined by the msgsz
argument), msgrcv fails. If the MSG_NOERROR flag is specified,
then msgrcv instead removes the message from the queue,
truncates its mtext field to msgsz bytes, and returns it to the
caller.

Operating systems Shared Memory and Message Queue 34 / 44



Receiving Messages - Example 1

// message structure definition
struct mymsg {

long mtype;
char mtext[100]; /* array of chars as message body */

} m;

// Get the size of the mtext field.
size_t mSize = sizeof(struct mymsg) - sizeof(long);

// Wait for a message having type equals to 1
if (msgrcv(msqid, &m, mSize, 1, 0) == -1)

errExit("msgrcv failed");

Operating systems Shared Memory and Message Queue 35 / 44



Receiving Messages - Example 2

// message structure definition
struct mymsg {

long mtype;
char mtext[100]; /* array of chars as message body */

} m;

// Set an arbitrary size for the size.
size_t mSize = sizeof(char) * 50;

// Wait for a message having type equals to 1, but copy its first 50 bytes only
if (msgrcv(msqid, &m, mSize, 1, MSG_NOERROR) == -1)

errExit("msgrcv failed");

Operating systems Shared Memory and Message Queue 36 / 44



Receiving Messages - Example 3

// Message structure
struct mymsg {

long mtype;
} m;
// In polling mode, try to get a message every SEC seconds.
while (1) {

sleep(SEC);
// Performing a nonblocking msgrcv.
if (msgrcv(msqid, &m, 0, 3, IPC_NOWAIT) == -1) {

if (errno == ENOMSG) {
printf("No message with type 3 in the queue\n");

} else {
errExit("msgrcv failed");

}
} else {

printf("I found a message with type 3\n");
}

}

Operating systems Shared Memory and Message Queue 37 / 44



Message Queue

Control operations

Operating systems Shared Memory and Message Queue 38 / 44



Message queue control operations

The msgctl system call performs control operations on the
message queue.
#include <sys/msg.h>

// Returns 0 on success, or -1 error
int msgctl(int msqid, int cmd, struct msqid_ds *buf);

I msqid is a message queue identifier.
I cmd specifies the operation to be performed on the queue:

I IPC_RMID: Immediately remove the message queue. All unread
messages are lost, and any blocked reader/writer awakened
(errno set to EIDRM). For this operation, buf is ignored

I IPC_STAT: Place a copy of the msqid_ds data structure
associated with this message queue in the buffer pointed to by
buf

I IPC_SET: Update selected fields of the msqid_ds data
structure associated with this message queue using values
provided in the buffer pointed to by buf

Operating systems Shared Memory and Message Queue 39 / 44



Message queue control operations - Example

Example showing how to remove a message queue
if (msgctl(msqid, IPC_RMID, NULL) == -1)

errExit("msgctl failed");
else

printf("message queue removed successfully\n");

Operating systems Shared Memory and Message Queue 40 / 44



Message queue control operations

For each message queue the kernel has an associated msqid_ds
data structure of the following form:
struct msqid_ds {

struct ipc_perm msg_perm; /* Ownership and permissions */
time_t msg_stime; /* Time of last msgsnd() */
time_t msg_rtime; /* Time of last msgrcv() */
time_t msg_ctime; /* Time of last change */
unsigned long __msg_cbytes; /* Number of bytes in queue */
msgqnum_t msg_qnum; /* Number of messages in queue */
msglen_t msg_qbytes; /* Maximum bytes in queue */
pid_t msg_lspid; /* PID of last msgsnd() */
pid_t msg_lrpid; /* PID of last msgrcv() */

};

With IPC_STAT and IPC_SET we can respectively get and update4

this data structure.

4Only the fields msg_perm and msg_qbytes can be modified
Operating systems Shared Memory and Message Queue 41 / 44



Message queue control operations

Example showing how to change upper limit size of a message
queue.
struct msqid_ds ds;
// Get the data structure of a message queue
if (msgctl(msqid, IPC_STAT, &ds) == -1)

errExit("msgctl");

// Change the upper limit on the number of bytes in the mtext
// fields of all messages in the message queue to 1 Kbyte
ds.msg_qbytes = 1024;

// Update associated data structure in kernel
if (msgctl(msqid, IPC_SET, &ds) == -1)

errExit("msgctl");

Operating systems Shared Memory and Message Queue 42 / 44



Conclusive Overview of System V IPC interfaces

Operating systems Shared Memory and Message Queue 43 / 44



Conclusive Overview of System V IPC interfaces

Interface Message queues Semaphores Shared memory

Header file <sys/msg.h> <sys/sem.h> <sys/shm.h>
Data structure msqid_ds semid_ds shmid_ds
Create/Open msgget(...) semget(...) shmget(...)
Close (none) (none) shmdt(...)
Control Oper. msgctl(...) semctl(...) shmctl(...)

Performing IPC msgsnd(...)
msgrcv(...)

semop(...)
to test/adjust

access memory
in shared region

Operating systems Shared Memory and Message Queue 44 / 44


	Shared memory
	Fundamental concepts
	Creating and Opening
	Attaching a segment

	Message Queue
	Creating and Opening
	The message structure
	Sending a message
	Receiving a message
	Control operations

	Conclusive Overview of System V IPC interfaces 

