
Operating systems
Interprocess communication (IPC)

Part 1 of 3: System V and Semaphores

Created by
Enrico Fraccaroli

enrico.fraccaroli@gmail.com

Operating systems System V and Semaphores 1 / 47

mailto:enrico.fraccaroli@gmail.com

Table of Contents

1. Introduction to System V IPC
1.1. Creating and Opening
1.2. Data Structures

2. IPCs Commands
2.1. ipcs
2.2. ipcrm

3. Semaphores
3.1. Creating and Opening
3.2. Control Operations
3.3. Other Operations

4. Next Lectures

Operating systems System V and Semaphores 2 / 47

Introduction to System V IPC

Operating systems System V and Semaphores 3 / 47

Introduction to System V IPC

Unix System V (aka "System Five")
Unix System V is one of the first commercial versions of the Unix
operating system. It was originally developed by AT&T and first
released in 1983. Four major versions of System V were released,
numbered 1, 2, 3, and 4. System V is sometimes abbreviated to
SysV.

Interprocess communication (IPC)
Interprocess communication (IPC) refers to mechanisms that
coordinate activities among cooperating processes. A common
example of this need is managing access to a given system
resource.

Operating systems System V and Semaphores 4 / 47

Introduction to System V IPC

System V IPCs refers to three different mechanisms for
interprocess communication:
I Semaphores let processes to synchronize their actions. A

semaphore is a kernel-maintained value, which is appropriately
modified by system’s processes before performing some critical
actions

I Message queues can be used to pass messages among
processes.

I Shared memory enables multiple processes to share a their
region of memory.

Other IPC
I Signals
I Pipes
I FIFOs

Operating systems System V and Semaphores 5 / 47

Introduction to System V IPC

Creating and Opening

Operating systems System V and Semaphores 6 / 47

Creating and opening a System V IPC object

Each System V IPC mechanism has an associated get system call
(msgget, semget, or shmget), which is analogous to the open
system call.

Given an integer key (analogous to a filename), the get system call
can either first create a new IPC, and then returns its unique
identifier, or returns the identifier of an existing IPC.

An IPC identifier is analogous to a file descriptor. It is used in all
subsequent system calls to refer to the IPC object.

Operating systems System V and Semaphores 7 / 47

Creating and opening a System V IPC object

Example showing how to create a semaphore (overview)
// PERM: rw-------
id = semget(key, 10 ,IPC_CREAT | S_IRUSR | S_IWUSR);
if (id == -1)

errExit(semget);

As with all of the get calls, the key is the first argument. It is a
value sensible for the application using the IPC object. The
returned IPC identifier is a unique code identifying the IPC object
in the system.

Mapping with the open system call:

key ->filename
id ->file descriptor

Operating systems System V and Semaphores 8 / 47

System V IPC keys

System V IPC keys are integer values represented using the data
type key_t. The IPC get calls translate a key into the
corresponding integer IPC identifier.

So, how do we provide a unique key that guarantees we do not
accidentally obtain the identifier of an existing IPC object used by
some other application?

Operating systems System V and Semaphores 9 / 47

System V IPC keys - IPC_PRIVATE flag

When creating a new IPC object, the key may be specified as
IPC_PRIVATE. In this way, we delegate the problem of finding a
unique key to the kernel.

Example of the usage of IPC_PRIVATE:
id = semget(IPC_PRIVATE, 10, S_IRUSR | S_IWUSR);

This technique is especially useful in multiprocess applications
where the parent process creates the IPC object prior to
performing a fork(), with the result that the child inherits the
identifier of the IPC object.

Operating systems System V and Semaphores 10 / 47

System V IPC keys - ftok()

The ftok (file to key) function converts a pathname and a proj_id
(i.e., project identifier) to a System V IPC key.
#include <sys/ipc.h>

// Returns integer key on succcess, or -1 on error (check errno)
key_t ftok(char *pathname, int proj_id);

The provided pathname has to refer to an existing, accessible file.
The last 8 bits of proj_id are actually used, and they have to be a
nonzero value).

Typically, pathname refers to one of the files, or directories, created
by the application.

Operating systems System V and Semaphores 11 / 47

System V IPC keys - ftok()

Example shows a typical usage of the function ftok

key_t key = ftok("/mydir/myfile", ’a’);
if (key == -1)

errExit("ftok failed");

int id = semget(key, 10, S_IRUSR | S_IWUSR);
if (id == -1)

errExit("semget failed");

Operating systems System V and Semaphores 12 / 47

Introduction to System V IPC

Data Structures

Operating systems System V and Semaphores 13 / 47

Associated Data Structure - ipc_perm

The kernel maintains an associated data structure (msqid_ds,
semid_ds, shmid_ds) for each instance of a System V IPC object.
As well as data specific to the type of IPC object, each associated
data structure includes the substructure ipc_perm holding the
granted permissions.
struct ipc_perm {

key_t __key; /* Key, as supplied to ’get’ call */
uid_t uid; /* Owner’s user ID */
gid_t gid; /* Owner’s group ID */
uid_t cuid; /* Creator’s user ID */
gid_t cgid; /* Creator’s group ID */
unsigned short mode; /* Permissions */
unsigned short __seq; /* Sequence number */

};

Operating systems System V and Semaphores 14 / 47

Associated Data Structure - ipc_perm

I The uid and gid fields specify the ownership of the IPC
object.

I The cuid and cgid fields hold the user and group IDs of the
process that created the object.

I The mode field holds the permissions mask for the IPC object,
which are initialized using the lower 9 bits of the flags
specified in the get system call used to create the object.

Some important notes about ipc_perm:
1. The cuid and cgid fields are immutable.
2. Only read and write permissions are meaningful for IPC

objects. Execute permission is meaningless, and it is ignored.

Operating systems System V and Semaphores 15 / 47

Associated Data Structure - ipc_perm - Example

Example shows a typical usage of the semctl to change the owner
of a semaphore.
struct semid_ds semq;
// get the data structure of a semaphore from the kernel
if (semctl(semid, 0, IPC_STAT, &semq) == -1)

errExit("semctl get failed");
// change the owner of the semaphore
semq.sem_perm.uid = newuid;
// update the kernel copy of the data structure
if (semctl(semid, IPC_SET, &semq) == -1)

errExit("semctl set failed");

Similarly, the shmctl and msgctl system calls are applied to update
the kernel data structure of a shared memory and message queue.

Operating systems System V and Semaphores 16 / 47

IPCs Commands

Operating systems System V and Semaphores 17 / 47

IPCs Commands

ipcs

Operating systems System V and Semaphores 18 / 47

The ipcs command

Using ipcs, we can obtain information about IPC objects on the
system. By default, ipcs displays all objects, as in the following
example:
user@localhost[~]$ ipcs
------ Message Queues --------
key msqid owner perms used-bytes messages
0x1235 26 student 620 12 20

------ Shared Memory Segments --------
key shmid owner perms bytes nattch status
0x1234 0 professor 600 8192 2

------ Semaphore Arrays --------
key semid owner perms nsems
0x1111 102 professor 330 20

Operating systems System V and Semaphores 19 / 47

IPCs Commands

ipcrm

Operating systems System V and Semaphores 20 / 47

The ipcrm command

Using ipcrm, we can remove IPC objects from the system.
Remove a message queue:
ipcrm -Q 0x1235 (0x1235 is the key of a queue)
ipcrm -q 26 (26 is the identifier of a queue)

Remove a shared memory segment
ipcrm -M 0x1234 (0x1234 is the key of a shared memory seg.)
ipcrm -m 0 (0 is the identifier of a shared memory seg.)

Remove a semaphore array
ipcrm -S 0x1111 (0x1111 is the key of a semaphore array)
ipcrm -s 102 (102 is the identifier of a semaphore array)

Operating systems System V and Semaphores 21 / 47

Semaphores

Operating systems System V and Semaphores 22 / 47

Semaphores

Creating and Opening

Operating systems System V and Semaphores 23 / 47

Creating/Opening a Semaphore Set

The semget system call creates a new semaphore set or obtains
the identifier of an existing set.
#include <sys/sem.h>

// Returns semaphore set identifier on success, or -1 error
int semget(key_t key, int nsems, int semflg);

The key arguments are: an IPC key, nsems specifies the number of
semaphores in that set, and must be greater than 0. semflg is a
bit mask specifying the permissions (see open(...) system call,
mode argument) to be places on a new semaphore set or checked
against an existing set.
In additions, the following flags can be ORed (|) in semflg:
I IPC_CREAT: If no semaphore set with the specified key exists,

create a new set.
I IPC_EXCL: in conjunction with IPC_CREAT, it makes semget fail

if a semaphore set exists with the specified key.
Operating systems System V and Semaphores 24 / 47

Creating/Opening a Semaphore Set

Example showing how to create a semaphore set having 10
semaphores
int semid;
ket_t key = //... (generate a key in some way, i.e. with ftok)

// A) delegate the problem of finding a unique key to the kernel
semid = semget(IPC_PRIVATE, 10, S_IRUSR | S_IWUSR);

// B) create a semaphore set with identifier key, if it doesn’t already exist
semid = semget(key, 10, IPC_CREAT | S_IRUSR | S_IWUSR);

//C) create a semaphore set with identifier key, but fail if it exists already
semid = semget(key, 10, IPC_CREAT | IPC_EXCL | S_IRUSR | S_IWUSR);

Operating systems System V and Semaphores 25 / 47

Semaphore Control Operations

The semctl system call performs a variety of control operations on
a semaphore set or on an individual semaphore within a set.
#include <sys/sem.h>

// Returns nonnegative integer on success, or -1 error
int semctl(int semid, int semnum, int cmd, ... /* union semun arg */);

The semid argument is the identifier of the semaphore set on
which the operation is to be performed.
Certain control operations (cmd) require a third/fourth argument.
Before presenting the available control operations on a semaphore
set, the union semun is introduced.

Operating systems System V and Semaphores 26 / 47

Semaphore Control Operations - union semun

The union semun must be explicitly defined by the programmer
before calling the semctl system call.
#ifndef SEMUN_H
#define SEMUN_H
#include <sys/sem.h>
// definition of the union semun
union semun {

int val;
struct semid_ds * buf;
unsigned short * array;

};
#endif

Operating systems System V and Semaphores 27 / 47

Semaphores

Control Operations

Operating systems System V and Semaphores 28 / 47

Semaphore Control Operations
Generic control operations

Usage template: int semctl(semid, 0 /*ignored*/, cmd, arg);

I IPC_RMID: Immediately remove the semaphore set. Any
processes blocked is awakened (error set to EIDRM). The arg
argument is not required.

I IPC_STAT: Place a copy of the semid_ds data structure
associated with this semaphore set in the buffer pointed to by
arg.buf.

I ICP_SET: Update selected fields of the semid_ds data
structure associated with this semaphore set using values in
the buffer pointed to by arg.buf.

Operating systems System V and Semaphores 29 / 47

Semaphore Control Operations
Generic control operations

struct semid_ds {
struct ipc_perm sem_perm; /* Ownership and permissions */
time_t sem_otime; /* Time of last semop() */
time_t sem_ctime; /* Time of last change */
unsigned long sem_nsems; /* Number of semaphores in set */

};

Only the subfields uid, gid, and mode of the substructure
sem_perm can be updated via IPC_SET.

Operating systems System V and Semaphores 30 / 47

Semaphore Control Operations
Generic control operations (Example)

Example showing how to change the permissions of a semaphore set
ket_t key = //... (generate a key in some way, i.e. with ftok)
// get, or create, the semaphore set
int semid = semget(key, 10, IPC_CREAT | S_IRUSR | S_IWUSR);
// instantiate a semid_ds struct
struct semid_ds ds;
// instantiate a semun union (defined manually somewhere)
union semun arg;
arg.buf = &ds;
// get a copy of semid_ds structure belonging to the kernel
if (semctl(semid, 0 /*ignored*/, IPC_STAT, arg) == -1)

errExit("semctl IPC_STAT failed");
// update permissions to guarantee read access to the group
arg.buf->sem_perms.mode |= S_IRGRP;
// update the semid_ds structure of the kernel
if (semctl(semid, 0 /*ignored*/, IPC_SET, arg) == -1)

errExit("semctl IPC_SET failed");

Operating systems System V and Semaphores 31 / 47

Semaphore Control Operations
Generic control operations (Example)

Example showing how to remove semaphore set
if (semctl(semid, 0/*ignored*/, IPC_RMID, 0/*ignored*/) == -1)

errExit("semctl failed");
else

printf("semaphore set removed successfully\n");

Operating systems System V and Semaphores 32 / 47

Semaphore Control Operations
Retrieving and initializing semaphore values

Usage template: int semctl(semid, semnum, cmd, arg);

I SETVAL: the value of the semnum-th semaphore in the set
referred to by semid is initialized to the value specified in
arg.val.

I GETVAL: as its function result, semctl returns the value of the
semnum-th semaphore in the semaphore set specified by
semid. The arg argument is not required.

Usage template: int semctl(semid, 0 /*ignored*/, cmd, arg);

I SETALL: initialize all semaphores in the set referred to by
semid, using the values supplied in the array pointed to by
arg.array.

I GETALL: retrieve the values of all of the semaphores in the set
referred to by semid, placing them in the array pointed to by
arg.array.

Operating systems System V and Semaphores 33 / 47

Semaphore Control Operations
Retrieving and initializing semaphore values (Example)

Example showing how to initialize a specific semaphore in a
semaphore set
ket_t key = //... (generate a key in some way, i.e. with ftok)
// get, or create, the semaphore set
int semid = semget(key, 10, IPC_CREAT | S_IRUSR | S_IWUSR);
// set the semaphore value to 0
union semun arg;
arg.val = 0;
// initialize the 5-th semaphore to 0
if (semctl(semid, 5, SETVAL, arg) == -1)

errExit("semctl SETVAL");

A semaphore set must be always initialized before using it!

Operating systems System V and Semaphores 34 / 47

Semaphore Control Operations
Retrieving and initializing semaphore values (Example)

Example showing how to get the current state of a specific
semaphore in a semaphore set.
ket_t key = //... (generate a key in some way, i.e. with ftok)
// get, or create, the semaphore set
int semid = semget(key, 10, IPC_CREAT | S_IRUSR | S_IWUSR);

// get the current state of the 5-th semaphore
int value = semctl(semid, 5, GETVAL, 0/*ignored*/);
if (value == -1)

errExit("semctl GETVAL");

Once returned, the semaphore may already have changed
state!

Operating systems System V and Semaphores 35 / 47

Semaphore Control Operations
Retrieving and initializing semaphore values (Example)

Example showing how to initialize a semaphore set having 10
semaphores
ket_t key = //... (generate a key in some way, i.e. with ftok)
// get, or create, the semaphore set
int semid = semget(key, 10, IPC_CREAT | S_IRUSR | S_IWUSR);
// set the first 5 semaphores to 1, and the remaining to 0
int values[] = {1,1,1,1,1,0,0,0,0,0};
union semun arg;
arg.array = values;
// initialize the semaphore set
if (semctl(semid, 0/*ignored*/, SETALL, arg) == -1)

errExit("semctl SETALL");

A semaphore set must be always initialized before using it!

Operating systems System V and Semaphores 36 / 47

Semaphore Control Operations
Retrieving and initializing semaphore values (Example)

Example showing how to get the current state of a semaphore
set having 10 semaphores
ket_t key = //... (generate a key in some way, i.e. with ftok)
// get, or create, the semaphore set
int semid = semget(key, 10, IPC_CREAT | S_IRUSR | S_IWUSR);
// declare an array big enougth to store the semaphores’ value
int values[10];
union semun arg;
arg.array = values;
// get the current state of a semaphore set
if (semctl(semid, 0/*ignored*/, GETALL, arg) == -1)

errExit("semctl GETALL");

Once returned, a semaphore may already have changed
state!

Operating systems System V and Semaphores 37 / 47

Semaphore Control Operations
Retrieving per-semaphore information

Usage template: int semctl(semid, semnum, cmd, 0);

I GETPID: return the process ID of the last process to perform a
semop on the semnum-th semaphore

I GETNCNT: return the number of processes currently waiting for
the value of the semnum-th semaphore to increase

I GETZCNT: return the number of processes currently waiting for
the value of the semnum-th semaphore to become 0;

Operating systems System V and Semaphores 38 / 47

Semaphore Control Operations
Retrieving per-semaphore information (Example)

Example showing how to get information about a semaphore of
the semaphore set
ket_t key = //... (generate a key in some way, i.e. with ftok)
// get, or create, the semaphore set
int semid = semget(key, 10, IPC_CREAT | S_IRUSR | S_IWUSR);
// ...
// get information about the first semaphore of the semaphore set
printf("Sem:%d getpid:%d getncnt:%d getzcnt:%d\n",
semid,
semctl(semid, 0, GETPID, NULL),
semctl(semid, 0, GETNCNT, NULL),
semctl(semid, 0, GETZCNT, NULL));

Once returned, the semaphore may already have changed
state!

Operating systems System V and Semaphores 39 / 47

Semaphores

Other Operations

Operating systems System V and Semaphores 40 / 47

Semaphore Operations

The semop system call performs one or more operations (wait (P)
and signal (V)) on semaphores.
#include <sys/sem.h>

// Returns 0 on success, or -1 on error
int semop(int semid, struct sembuf *sops, unsigned int nsops);

The sops argument is a pointer to an array that contains a sorted
sequence of operations to be performed atomically, and nsops (>
0) gives the size of this array. The elements of the sops array are
structures of the following form:
struct sembuf {

unsigned short sem_num; /* Semaphore number */
short sem_op; /* Operation to be performed */
short sem_flg; /* Operation flags */

};

Operating systems System V and Semaphores 41 / 47

Semaphore Operations

The sem_num field identifies the semaphore within the set upon
which the operation is to be performed. The sem_op field specifies
the operation to be performed:
I sem_op > 0: value of sem_op is added to the value of the

semnum-th semaphore.
I sem_op = 0: the value of the semnum-th semaphore is checked

to see whether it currently equals 0. If it doesn’t, the calling
process is blocked until the semaphore is 0.

I sem_op < 0: decrease the value of the semnum-th semaphore
by the amount specified in sem_op. it blocks the calling
process until the semaphore value has been increased to a
level that permits the operation to be performed without
resulting in a negative value.

Operating systems System V and Semaphores 42 / 47

Semaphore Operations

When a semop(...) call blocks, the process remains blocked until
on of the following occurs:
I Another process modifies the value of the semaphore such

that the requested operation can proceed.
I A signal interrupts the semop(...) call. In this case, the error

EINTR results.
I Another process deletes the semaphore referred to by semid.

In this case, semop(...) fails with the error EIDRM.
We can prevent semop(...) from blocking when performing an
operation on a particular semaphore by specifying the IPC_NOWAIT
flag in the corresponding sem_flg field. In this case, if semop(...)
would have blocked, it instead fails with the error EAGAIN.

Operating systems System V and Semaphores 43 / 47

Semaphore Operations

Example showing how to initialize an array of sembuf operations
struct sembuf sops[3];

sops[0].sem_num = 0;
sops[0].sem_op = -1; // subtract 1 from semaphore 0
sops[0].sem_flg = 0;

sops[1].sem_num = 1;
sops[1].sem_op = 2; // add 2 to semaphore 1
sops[1].sem_flg = 0;

sops[2].sem_num = 2;
sops[2].sem_op = 0; // wait for semaphore 2 to equal 0
// but don’t block if operation cannot be performed immediately
sops[2].sem_flg = IPC_NOWAIT;

Operating systems System V and Semaphores 44 / 47

Semaphore Operations

Example showing how to perform operations on a semaphore set
struct sembuf sops[3];

// .. see the previous slide to initilize sembuf

if (semop(semid, sops, 3) == -1) {
if (errno == EAGAIN) // Semaphore 2 would have blocked

printf("Operation would have blocked\n");
else

errExit("semop"); // Some other error
}

Operating systems System V and Semaphores 45 / 47

Next Lectures

Operating systems System V and Semaphores 46 / 47

Next Lectures

I Lecture 2 of 3: System V IPC:
I Message queues
I Shared memory

I Lecture 3 of 3: IPC:
I Signal
I Pipe
I Fifo

Operating systems System V and Semaphores 47 / 47

	Introduction to System V IPC
	Creating and Opening
	Data Structures

	IPCs Commands
	ipcs
	ipcrm

	Semaphores
	Creating and Opening
	Control Operations
	Other Operations

	Next Lectures

