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Introduction to System V IPC

Unix System V (aka "System Five")
Unix System V is one of the first commercial versions of the Unix
operating system. It was originally developed by AT&T and first
released in 1983. Four major versions of System V were released,
numbered 1, 2, 3, and 4. System V is sometimes abbreviated to
SysV.

Interprocess communication (IPC)
Interprocess communication (IPC) refers to mechanisms that
coordinate activities among cooperating processes. A common
example of this need is managing access to a given system
resource.
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Introduction to System V IPC

System V IPCs refers to three different mechanisms for
interprocess communication:
I Semaphores let processes to synchronize their actions. A

semaphore is a kernel-maintained value, which is appropriately
modified by system’s processes before performing some critical
actions

I Message queues can be used to pass messages among
processes.

I Shared memory enables multiple processes to share a their
region of memory.

Other IPC
I Signals
I Pipes
I FIFOs
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Introduction to System V IPC

Creating and Opening
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Creating and opening a System V IPC object

Each System V IPC mechanism has an associated get system call
(msgget, semget, or shmget), which is analogous to the open
system call.

Given an integer key (analogous to a filename), the get system call
can either first create a new IPC, and then returns its unique
identifier, or returns the identifier of an existing IPC.

An IPC identifier is analogous to a file descriptor. It is used in all
subsequent system calls to refer to the IPC object.
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Creating and opening a System V IPC object

Example showing how to create a semaphore (overview)
// PERM: rw-------
id = semget(key, 10 ,IPC_CREAT | S_IRUSR | S_IWUSR);
if (id == -1)

errExit(semget);

As with all of the get calls, the key is the first argument. It is a
value sensible for the application using the IPC object. The
returned IPC identifier is a unique code identifying the IPC object
in the system.

Mapping with the open system call:

key ->filename
id ->file descriptor
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System V IPC keys

System V IPC keys are integer values represented using the data
type key_t. The IPC get calls translate a key into the
corresponding integer IPC identifier.

So, how do we provide a unique key that guarantees we do not
accidentally obtain the identifier of an existing IPC object used by
some other application?
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System V IPC keys - IPC_PRIVATE flag

When creating a new IPC object, the key may be specified as
IPC_PRIVATE. In this way, we delegate the problem of finding a
unique key to the kernel.

Example of the usage of IPC_PRIVATE:
id = semget(IPC_PRIVATE, 10, S_IRUSR | S_IWUSR);

This technique is especially useful in multiprocess applications
where the parent process creates the IPC object prior to
performing a fork(), with the result that the child inherits the
identifier of the IPC object.
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System V IPC keys - ftok()

The ftok (file to key) function converts a pathname and a proj_id
(i.e., project identifier) to a System V IPC key.
#include <sys/ipc.h>

// Returns integer key on succcess, or -1 on error (check errno)
key_t ftok(char *pathname, int proj_id);

The provided pathname has to refer to an existing, accessible file.
The last 8 bits of proj_id are actually used, and they have to be a
nonzero value).

Typically, pathname refers to one of the files, or directories, created
by the application.
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System V IPC keys - ftok()

Example shows a typical usage of the function ftok

key_t key = ftok("/mydir/myfile", ’a’);
if (key == -1)

errExit("ftok failed");

int id = semget(key, 10, S_IRUSR | S_IWUSR);
if (id == -1)

errExit("semget failed");
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Introduction to System V IPC

Data Structures
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Associated Data Structure - ipc_perm

The kernel maintains an associated data structure (msqid_ds,
semid_ds, shmid_ds) for each instance of a System V IPC object.
As well as data specific to the type of IPC object, each associated
data structure includes the substructure ipc_perm holding the
granted permissions.
struct ipc_perm {

key_t __key; /* Key, as supplied to ’get’ call */
uid_t uid; /* Owner’s user ID */
gid_t gid; /* Owner’s group ID */
uid_t cuid; /* Creator’s user ID */
gid_t cgid; /* Creator’s group ID */
unsigned short mode; /* Permissions */
unsigned short __seq; /* Sequence number */

};
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Associated Data Structure - ipc_perm

I The uid and gid fields specify the ownership of the IPC
object.

I The cuid and cgid fields hold the user and group IDs of the
process that created the object.

I The mode field holds the permissions mask for the IPC object,
which are initialized using the lower 9 bits of the flags
specified in the get system call used to create the object.

Some important notes about ipc_perm:
1. The cuid and cgid fields are immutable.
2. Only read and write permissions are meaningful for IPC

objects. Execute permission is meaningless, and it is ignored.
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Associated Data Structure - ipc_perm - Example

Example shows a typical usage of the semctl to change the owner
of a semaphore.
struct semid_ds semq;
// get the data structure of a semaphore from the kernel
if (semctl(semid, 0, IPC_STAT, &semq) == -1)

errExit("semctl get failed");
// change the owner of the semaphore
semq.sem_perm.uid = newuid;
// update the kernel copy of the data structure
if (semctl(semid, IPC_SET, &semq) == -1)

errExit("semctl set failed");

Similarly, the shmctl and msgctl system calls are applied to update
the kernel data structure of a shared memory and message queue.
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IPCs Commands
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IPCs Commands

ipcs
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The ipcs command

Using ipcs, we can obtain information about IPC objects on the
system. By default, ipcs displays all objects, as in the following
example:
user@localhost[~]$ ipcs
------ Message Queues --------
key msqid owner perms used-bytes messages
0x1235 26 student 620 12 20

------ Shared Memory Segments --------
key shmid owner perms bytes nattch status
0x1234 0 professor 600 8192 2

------ Semaphore Arrays --------
key semid owner perms nsems
0x1111 102 professor 330 20
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IPCs Commands

ipcrm
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The ipcrm command

Using ipcrm, we can remove IPC objects from the system.
Remove a message queue:
ipcrm -Q 0x1235 ( 0x1235 is the key of a queue )
ipcrm -q 26 ( 26 is the identifier of a queue )

Remove a shared memory segment
ipcrm -M 0x1234 ( 0x1234 is the key of a shared memory seg. )
ipcrm -m 0 ( 0 is the identifier of a shared memory seg. )

Remove a semaphore array
ipcrm -S 0x1111 ( 0x1111 is the key of a semaphore array )
ipcrm -s 102 ( 102 is the identifier of a semaphore array )
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Semaphores
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Semaphores

Creating and Opening
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Creating/Opening a Semaphore Set

The semget system call creates a new semaphore set or obtains
the identifier of an existing set.
#include <sys/sem.h>

// Returns semaphore set identifier on success, or -1 error
int semget(key_t key, int nsems, int semflg);

The key arguments are: an IPC key, nsems specifies the number of
semaphores in that set, and must be greater than 0. semflg is a
bit mask specifying the permissions (see open(...) system call,
mode argument) to be places on a new semaphore set or checked
against an existing set.
In additions, the following flags can be ORed (|) in semflg:
I IPC_CREAT: If no semaphore set with the specified key exists,

create a new set.
I IPC_EXCL: in conjunction with IPC_CREAT, it makes semget fail

if a semaphore set exists with the specified key.
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Creating/Opening a Semaphore Set

Example showing how to create a semaphore set having 10
semaphores
int semid;
ket_t key = //... (generate a key in some way, i.e. with ftok)

// A) delegate the problem of finding a unique key to the kernel
semid = semget(IPC_PRIVATE, 10, S_IRUSR | S_IWUSR);

// B) create a semaphore set with identifier key, if it doesn’t already exist
semid = semget(key, 10, IPC_CREAT | S_IRUSR | S_IWUSR);

//C) create a semaphore set with identifier key, but fail if it exists already
semid = semget(key, 10, IPC_CREAT | IPC_EXCL | S_IRUSR | S_IWUSR);
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Semaphore Control Operations

The semctl system call performs a variety of control operations on
a semaphore set or on an individual semaphore within a set.
#include <sys/sem.h>

// Returns nonnegative integer on success, or -1 error
int semctl(int semid, int semnum, int cmd, ... /* union semun arg */);

The semid argument is the identifier of the semaphore set on
which the operation is to be performed.
Certain control operations (cmd) require a third/fourth argument.
Before presenting the available control operations on a semaphore
set, the union semun is introduced.
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Semaphore Control Operations - union semun

The union semun must be explicitly defined by the programmer
before calling the semctl system call.
#ifndef SEMUN_H
#define SEMUN_H
#include <sys/sem.h>
// definition of the union semun
union semun {

int val;
struct semid_ds * buf;
unsigned short * array;

};
#endif
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Semaphores

Control Operations

Operating systems System V and Semaphores 28 / 47



Semaphore Control Operations
Generic control operations

Usage template: int semctl(semid, 0 /*ignored*/, cmd, arg);

I IPC_RMID: Immediately remove the semaphore set. Any
processes blocked is awakened (error set to EIDRM). The arg
argument is not required.

I IPC_STAT: Place a copy of the semid_ds data structure
associated with this semaphore set in the buffer pointed to by
arg.buf.

I ICP_SET: Update selected fields of the semid_ds data
structure associated with this semaphore set using values in
the buffer pointed to by arg.buf.
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Semaphore Control Operations
Generic control operations

struct semid_ds {
struct ipc_perm sem_perm; /* Ownership and permissions */
time_t sem_otime; /* Time of last semop() */
time_t sem_ctime; /* Time of last change */
unsigned long sem_nsems; /* Number of semaphores in set */

};

Only the subfields uid, gid, and mode of the substructure
sem_perm can be updated via IPC_SET.
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Semaphore Control Operations
Generic control operations (Example)

Example showing how to change the permissions of a semaphore set
ket_t key = //... (generate a key in some way, i.e. with ftok)
// get, or create, the semaphore set
int semid = semget(key, 10, IPC_CREAT | S_IRUSR | S_IWUSR);
// instantiate a semid_ds struct
struct semid_ds ds;
// instantiate a semun union (defined manually somewhere)
union semun arg;
arg.buf = &ds;
// get a copy of semid_ds structure belonging to the kernel
if (semctl(semid, 0 /*ignored*/, IPC_STAT, arg) == -1)

errExit("semctl IPC_STAT failed");
// update permissions to guarantee read access to the group
arg.buf->sem_perms.mode |= S_IRGRP;
// update the semid_ds structure of the kernel
if (semctl(semid, 0 /*ignored*/, IPC_SET, arg) == -1)

errExit("semctl IPC_SET failed");
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Semaphore Control Operations
Generic control operations (Example)

Example showing how to remove semaphore set
if (semctl(semid, 0/*ignored*/, IPC_RMID, 0/*ignored*/) == -1)

errExit("semctl failed");
else

printf("semaphore set removed successfully\n");
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Semaphore Control Operations
Retrieving and initializing semaphore values

Usage template: int semctl(semid, semnum, cmd, arg);

I SETVAL: the value of the semnum-th semaphore in the set
referred to by semid is initialized to the value specified in
arg.val.

I GETVAL: as its function result, semctl returns the value of the
semnum-th semaphore in the semaphore set specified by
semid. The arg argument is not required.

Usage template: int semctl(semid, 0 /*ignored*/, cmd, arg);

I SETALL: initialize all semaphores in the set referred to by
semid, using the values supplied in the array pointed to by
arg.array.

I GETALL: retrieve the values of all of the semaphores in the set
referred to by semid, placing them in the array pointed to by
arg.array.

Operating systems System V and Semaphores 33 / 47



Semaphore Control Operations
Retrieving and initializing semaphore values (Example)

Example showing how to initialize a specific semaphore in a
semaphore set
ket_t key = //... (generate a key in some way, i.e. with ftok)
// get, or create, the semaphore set
int semid = semget(key, 10, IPC_CREAT | S_IRUSR | S_IWUSR);
// set the semaphore value to 0
union semun arg;
arg.val = 0;
// initialize the 5-th semaphore to 0
if (semctl(semid, 5, SETVAL, arg) == -1)

errExit("semctl SETVAL");

A semaphore set must be always initialized before using it!
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Semaphore Control Operations
Retrieving and initializing semaphore values (Example)

Example showing how to get the current state of a specific
semaphore in a semaphore set.
ket_t key = //... (generate a key in some way, i.e. with ftok)
// get, or create, the semaphore set
int semid = semget(key, 10, IPC_CREAT | S_IRUSR | S_IWUSR);

// get the current state of the 5-th semaphore
int value = semctl(semid, 5, GETVAL, 0/*ignored*/);
if (value == -1)

errExit("semctl GETVAL");

Once returned, the semaphore may already have changed
state!
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Semaphore Control Operations
Retrieving and initializing semaphore values (Example)

Example showing how to initialize a semaphore set having 10
semaphores
ket_t key = //... (generate a key in some way, i.e. with ftok)
// get, or create, the semaphore set
int semid = semget(key, 10, IPC_CREAT | S_IRUSR | S_IWUSR);
// set the first 5 semaphores to 1, and the remaining to 0
int values[] = {1,1,1,1,1,0,0,0,0,0};
union semun arg;
arg.array = values;
// initialize the semaphore set
if (semctl(semid, 0/*ignored*/, SETALL, arg) == -1)

errExit("semctl SETALL");

A semaphore set must be always initialized before using it!
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Semaphore Control Operations
Retrieving and initializing semaphore values (Example)

Example showing how to get the current state of a semaphore
set having 10 semaphores
ket_t key = //... (generate a key in some way, i.e. with ftok)
// get, or create, the semaphore set
int semid = semget(key, 10, IPC_CREAT | S_IRUSR | S_IWUSR);
// declare an array big enougth to store the semaphores’ value
int values[10];
union semun arg;
arg.array = values;
// get the current state of a semaphore set
if (semctl(semid, 0/*ignored*/, GETALL, arg) == -1)

errExit("semctl GETALL");

Once returned, a semaphore may already have changed
state!
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Semaphore Control Operations
Retrieving per-semaphore information

Usage template: int semctl(semid, semnum, cmd, 0);

I GETPID: return the process ID of the last process to perform a
semop on the semnum-th semaphore

I GETNCNT: return the number of processes currently waiting for
the value of the semnum-th semaphore to increase

I GETZCNT: return the number of processes currently waiting for
the value of the semnum-th semaphore to become 0;
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Semaphore Control Operations
Retrieving per-semaphore information (Example)

Example showing how to get information about a semaphore of
the semaphore set
ket_t key = //... (generate a key in some way, i.e. with ftok)
// get, or create, the semaphore set
int semid = semget(key, 10, IPC_CREAT | S_IRUSR | S_IWUSR);
// ...
// get information about the first semaphore of the semaphore set
printf("Sem:%d getpid:%d getncnt:%d getzcnt:%d\n",
semid,
semctl(semid, 0, GETPID, NULL),
semctl(semid, 0, GETNCNT, NULL),
semctl(semid, 0, GETZCNT, NULL));

Once returned, the semaphore may already have changed
state!
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Semaphores

Other Operations
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Semaphore Operations

The semop system call performs one or more operations (wait (P)
and signal (V)) on semaphores.
#include <sys/sem.h>

// Returns 0 on success, or -1 on error
int semop(int semid, struct sembuf *sops, unsigned int nsops);

The sops argument is a pointer to an array that contains a sorted
sequence of operations to be performed atomically, and nsops (>
0) gives the size of this array. The elements of the sops array are
structures of the following form:
struct sembuf {

unsigned short sem_num; /* Semaphore number */
short sem_op; /* Operation to be performed */
short sem_flg; /* Operation flags */

};
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Semaphore Operations

The sem_num field identifies the semaphore within the set upon
which the operation is to be performed. The sem_op field specifies
the operation to be performed:
I sem_op > 0: value of sem_op is added to the value of the

semnum-th semaphore.
I sem_op = 0: the value of the semnum-th semaphore is checked

to see whether it currently equals 0. If it doesn’t, the calling
process is blocked until the semaphore is 0.

I sem_op < 0: decrease the value of the semnum-th semaphore
by the amount specified in sem_op. it blocks the calling
process until the semaphore value has been increased to a
level that permits the operation to be performed without
resulting in a negative value.
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Semaphore Operations

When a semop(...) call blocks, the process remains blocked until
on of the following occurs:
I Another process modifies the value of the semaphore such

that the requested operation can proceed.
I A signal interrupts the semop(...) call. In this case, the error

EINTR results.
I Another process deletes the semaphore referred to by semid.

In this case, semop(...) fails with the error EIDRM.
We can prevent semop(...) from blocking when performing an
operation on a particular semaphore by specifying the IPC_NOWAIT
flag in the corresponding sem_flg field. In this case, if semop(...)
would have blocked, it instead fails with the error EAGAIN.
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Semaphore Operations

Example showing how to initialize an array of sembuf operations
struct sembuf sops[3];

sops[0].sem_num = 0;
sops[0].sem_op = -1; // subtract 1 from semaphore 0
sops[0].sem_flg = 0;

sops[1].sem_num = 1;
sops[1].sem_op = 2; // add 2 to semaphore 1
sops[1].sem_flg = 0;

sops[2].sem_num = 2;
sops[2].sem_op = 0; // wait for semaphore 2 to equal 0
// but don’t block if operation cannot be performed immediately
sops[2].sem_flg = IPC_NOWAIT;
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Semaphore Operations

Example showing how to perform operations on a semaphore set
struct sembuf sops[3];

// .. see the previous slide to initilize sembuf

if (semop(semid, sops, 3) == -1) {
if (errno == EAGAIN) // Semaphore 2 would have blocked

printf("Operation would have blocked\n");
else

errExit("semop"); // Some other error
}
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Next Lectures
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Next Lectures

I Lecture 2 of 3: System V IPC:
I Message queues
I Shared memory

I Lecture 3 of 3: IPC:
I Signal
I Pipe
I Fifo
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