
Operating systems
Processes

Created by
Enrico Fraccaroli

enrico.fraccaroli@gmail.com

Operating systems Processes 1 / 64

mailto:enrico.fraccaroli@gmail.com

Table of Contents

1. Attributes of a process
1.1. Identifier
1.2. Environment
1.3. Working directory
1.4. File descriptor table

2. Operations with processes
2.1. Termination
2.2. Creation
2.3. Monitoring

3. Program execution (exec library functions)

Operating systems Processes 2 / 64

Attributes of a process

Operating systems Processes 3 / 64

Recall to the previous lecture

Process
A process is an instance of an executing program.
From the Kernel’s point of view, a process consists of:
I user-space memory containing program code,
I the variables used by that code, and
I a set of kernel data structures that maintain information

about the process’s state (e.g. page tables, table of open files,
signals to be delivered, process resource usage and limits, . . .)

Operating systems Processes 4 / 64

Attributes of a process

Identifier

Operating systems Processes 5 / 64

Process identifier

The getpid system call returns the process ID of the calling
process.
#include <unistd.h>
#include <sys/types.h>

pid_t getpid(void);

The pid_t data type used for the return value of getpid is an
integer type for the purpose of storing process IDs.
With the exception of a few system processes such as init (process
ID 1), there is no fixed relationship between a program and the
process ID of the process that is created to run that program.
// to see the init process
user@localhost[~]$ ps auxf

N.B. The getpid system call is always successful!

Operating systems Processes 6 / 64

Real and effective process user-ID (1/3)

The getuid and getgid system calls return, respectively, the real
user ID and real group ID of the calling process. The geteuid and
getegid system calls perform the corresponding tasks for the
effective IDs.
#include <unistd.h>
#include <sys/types.h>

uid_t getuid(void); // Real user ID
uid_t geteuid(void); // Effective user ID

gid_t getgid(void); // Real group ID
gid_t getegid(void); // Effective group ID

N.B. They are always successful!

Operating systems Processes 7 / 64

Real and effective process user-ID (2/3)

I real user ID and group ID identify the user and group to
which the process belongs,

I effective user ID and group ID are used to determine the
permissions granted to a process when it tries to perform
operations.

Here is the content of file program.c:
#include <unistd.h>
#include <sys/types.h>
int main (int argc, char *argv[]) {

printf("PID: %d, user-ID: real %d, effective %d\n",
getpid(), getuid(), geteuid());

return 0;
}

Operating systems Processes 8 / 64

Real and effective process user-ID (3/3)

user@localhost[~]$ gcc -o program program.c
user@localhost[~]$ ls -l program

-r-xr-xr-x 1 Professor Professor 8712 Jan 16 16:27 program

user@localhost[~]$./program
PID: 1234, user-ID: real 1000, effective 1000

user@localhost[~]$ sudo ./program
PID: 1423, user-ID: real 0, effective 0

user@localhost[~]$ sudo chmod u+s program
user@localhost[~]$ ls -l program

-r-sr-xr-x 1 root Professor 8712 Jan 16 16:27 program

user@localhost[~]$./program
PID: 4321, user-ID: real 1000, effective 0

Keep in mind: if the Sticky bit is unset, then the user’s
permissions are granted to the executable to perform operations. If
it is set, then the owner’s permissions are granted to executable.

Operating systems Processes 9 / 64

Attributes of a process

Environment

Operating systems Processes 10 / 64

Process environment (1/5)

Each process has an associated array of strings called the
environment list, or simply the environment. Each of these strings
is a definition of the form name = value. When a new process is
created, it inherits a copy of its parent’s environment.
The structure of the environment list is as follows:

NULL

environ

HOME=/home/user

PWD=/tmp

USER=user

Operating systems Processes 11 / 64

Process environment (2/5)

Within a C program, the environment list can be accessed by
either:
1. using the global variable char **environ. Originally it was

used specifically in POSIX systems, now this technique is
widely used and supported by many systems.

2. or you can also receive the current environment as third
argument of the main function. This technique is recognized
as standard C, but it is not supported by all the operating
systems.

Operating systems Processes 12 / 64

Process environment (3/5)

Displaying the process environment, first technique:
#include <stdio.h>
// Global variable pointing to the enviroment of the process.
extern char **environ;

int main(int argc, char *argv[]) {
for (char **it = environ; (*it) != NULL; ++it) {

printf("--> %s\n", *it);
}
return 0;

}

user@localhost[~]$./program
--> $HOME=/home/Professor
--> $PWD=/tmp
--> $USER=Professor

Operating systems Processes 13 / 64

Process environment (4/5)

Displaying the process environment, second technique:
#include <stdio.h>
int main(int argc, char *argv[], char* env[]) {

for (char **it = env; (*it) != NULL; ++it) {
printf("--> %s\n", *it);

}
return 0;

}

user@localhost[~]$./program
--> $HOME=/home/Professor
--> $PWD=/tmp
--> $USER=Professor

Operating systems Processes 14 / 64

Process environment (5/5)

#include <stdlib.h>
// Returns pointer to (value) string, or NULL if no such variable exists
char *getenv(const char *name);
// Returns 0 on success, or -1 on error
int setenv(const char *name, const char *value, int overwrite);
// Returns 0 on success, or -1 on error
int unsetenv(const char *name);

I given a variable name, getenv returns a pointer to its string
value, or NULL if no environment variable exists with the
specified name.

I setenv adds name=value to the environment, unless a variable
identified by name already exists and overwrite has the value
0. If overwrite is nonzero, the environment is always changed.

I unsetenv removes the variable identified by name from the
environment.

Operating systems Processes 15 / 64

Attributes of a process

Working directory

Operating systems Processes 16 / 64

Process working directory (1/3)

A process can retrieve its current working directory using getcwd.
#include <unistd.h>

// Returns cwdbuf on success, or NULL on error.
char *getcwd(char *cwdbuf, size_t size);

On success, getcwd returns a pointer to cwdbuf as its function
result. If the pathname for the current working directory exceeds
size bytes, then getcwd returns NULL.

The caller must allocate the cwdbuf buffer to be at least size bytes
in length. (Normally, we would size cwdbuf using the PATH_MAX
constant.)

Operating systems Processes 17 / 64

Process working directory (2/3)

The chdir system call changes the calling process’s current
working directory to the relative or absolute pathname specified in
pathname.
#include <unistd.h>

// Returns 0 on success, or -1 on error
int chdir(const char *pathname);

The fchdir system call does the same as chdir, except that the
directory is specified via a file descriptor previously obtained by
opening the directory with open.
#define _BSD_SOURCE
#include <unistd.h>

// Returns 0 on success, or -1 on error.
int fchdir(int fd);

Operating systems Processes 18 / 64

Process working directory (3/3)

char buf[PATH_MAX];
// Open the current working directory
int fd = open(".", O_RDONLY);
getcwd(buf, PATH_MAX);
printf("1) Current dir:\n\t%s\n", buf);

// Move the process into /tmp
chdir("/tmp");
getcwd(buf, PATH_MAX);
printf("2) Current dir:\n\t%s\n", buf);

// Move the process back into the initial directory
fchdir(fd);
getcwd(buf, PATH_MAX);
printf("3) Current dir:\n\t%s\n", buf);

// Close the file descriptor
close(fd);

Here is the output:
1) Current dir:

/home/Professor
2) Current dir:

/tmp
3) Current dir:

/home/Professor

Operating systems Processes 19 / 64

Attributes of a process

File descriptor table

Operating systems Processes 20 / 64

Process file descriptor table (1/5)

Each process has an associated file descriptor table. Each entry
represents an input/output resource (e.g. file, pipe, socket) used
by the process.
The directory /proc/<PID>/fd1 contains a symbolic link for each
entry of the file descriptor table of a process.

A created process has always three file descriptors (stdin, stdout,
stderr)
user@localhost[~]$ sleep 30 &
[1] 1344

user@localhost[~]$ ls -l /proc/1344/fd
total 0
lrwx------ 1 Professor Professor 0 Jan 18 12:35 0 -> /dev/pts/0
lrwx------ 1 Professor Professor 0 Jan 18 12:35 1 -> /dev/pts/0
lrwx------ 1 Professor Professor 0 Jan 18 12:35 2 -> /dev/pts/0

1Process information pseudo-file system, it doesn’t contain ’real’ files but
runtime system information.

Operating systems Processes 21 / 64

Process file descriptor table (2/5)

Displaying the file descriptor entries of a process
char buf[PATH_MAX];
// Replace %i with PID, and store the resulting string in buf.
snprintf(buf, PATH_MAX, "/proc/%i/fd/", getpid());

DIR *dir = opendir(buf);
struct dirent *dp;
while ((dp = readdir(dir)) != NULL) {

if ((strcmp(dp->d_name,".") != 0) && (strcmp(dp->d_name,"..") != 0)) {
printf("\tEntry: %s\n", dp->d_name);

}
}
closedir(dir);

user@localhost[~]$./program
Entry: 0 // link to stdin
Entry: 1 // link to stdout
Entry: 2 // link to stderr
Entry: 3 // link to /proc/<PID>/fd directory

Operating systems Processes 22 / 64

Process file descriptor table (3/5)

Important
At a new entry of the file descriptor table is always assigned the
lowest available index.
Redirecting the standard output stream of a process to a file
named myfile
// We close STDOUT which has FD 1. The remaining file descriptors have
// index 0 (stdin) and 2 (stderr).
close(STDOUT_FILENO);
// We open a new file, to which will be assigned FD 1 automatically
// because it is the lowest available index in the table.
int fd = open("myfile", O_TRUNC | O_CREAT | O_WRONLY, S_IRUSR | S_IWUSR);
// Printf uses the FD 1, thus, it will print on the file.
printf("ciao\n");

No string will be displayed on terminal, as stdout stream is closed.
However, all string printed by printf will be reported in myfile.

Operating systems Processes 23 / 64

Process file descriptor table (4/5)

The dup system call takes an open file descriptor, and returns a
new descriptor that refers to the same open file description. The
new descriptor is guaranteed to be the lowest unused file descriptor.

#include <unistd.h>

// Returns (new) file descriptor on success, or -1 on error.
int dup(int oldfd);

Operating systems Processes 24 / 64

Process file descriptor table (5/5)

Redirecting stdout and stderr of a process to a file named myfile
// FDT: [0, 1, 2] -> [0, 2]
close(STDOUT_FILENO);
// FDT: [0, 2] -> [0]
close(STDERR_FILENO);
// FDT: [0] -> [0, 1]
int fd = open("myfile", O_TRUNC | O_CREAT | O_WRONLY, S_IRUSR | S_IWUSR);
// FDT: [0, 1] -> [0, 1, 2]
dup(1);
// FDT: [0: STDIN, 1: myfile, 2: myfile]
printf("Have a good ");
fflush(stdout);
fprintf(stderr, "day!\n");

user@localhost[~]$ cat myfile
Have a good day!

Operating systems Processes 25 / 64

Operations with processes

Operating systems Processes 26 / 64

Operations with processes

Termination

Operating systems Processes 27 / 64

Process termination (1/5)

The process calling _exit() is always successfully terminated.

#include <unistd.h>

void _exit(int status);

The first byte of the status argument defines the termination
status of the process. By convention, the zero value indicates that
the process terminated successfully, a nonzero status value
indicates that the process terminated unsuccessfully.

Operating systems Processes 28 / 64

Process termination (2/5)

Programs generally call exit() rather than _exit().
#include <stdlib.h> // N.B. provided by C library

void exit(int status);

C library defines the macros EXIT_SUCCESS (0) and EXIT_FAILURE
(1)

The following actions are performed by exit() method:
I Call exit handlers (see next slides).
I Flush stdio stream buffers.
I Call _exit(), using the value supplied in status.

Operating systems Processes 29 / 64

Process termination (3/5)

An exit handler is a function that is registered during the life of a
process. It is automatically called during the process termination
via exit().

#include <stdlib.h>

// Returns 0 on success, or nonzero on error.
int atexit(void (*func)(void));

The atexit() adds the provided function pointer func to a list of
functions that are called during the process termination.

func has to be defined to take no argument and return no value.

If more exit handler are registered, then they are called in
reverse order of registration.

Operating systems Processes 30 / 64

Process termination (4/5)

#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
void func1() { printf("\tAtexit function 1 called\n"); }
void func2() { printf("\tAtexit function 2 called\n"); }
int main (int argc, char *argv[]) {

if (atexit(func1) != 0 || atexit(func2) != 0)
_exit(EXIT_FAILURE);

exit(EXIT_SUCCESS);
}

Here is the output of the program:
user@localhost[~]$./exit_handlers

Atexit function 2 called
Atexit function 1 called

Operating systems Processes 31 / 64

Process termination (5/5)

One other way in which a process may terminates is to return from
main()

I performing an explicit return n is equivalent to calling
exit(n);

I performing an implicit return or falling off the end of main()
is equivalent to calling exit(0) in C99 standard. Otherwise,
the behaviour of the process is undefined.

Operating systems Processes 32 / 64

Operations with processes

Creation

Operating systems Processes 33 / 64

Process creation (1/6)

#include <unistd.h>

// In parent: returns process ID of child on success, or -1 on error.
// In created child: always returns 0.
pid_t fork(void);

The fork() system call creates a new process, the child, which is
an almost exact duplicate of the calling process, the parent.
I After the execution of a fork(), two processes exist, and, in

each process, execution continues from the point where the
fork() returns.

I It is indeterminate which of the two processes is next
scheduled to use the CPU.

I The child receives duplicates of all parent’s file descriptors and
the attached shared memories (see Filesystem and IPC slides)

Operating systems Processes 34 / 64

Process creation (2/6)

#include <unistd.h>
int main (int argc, char *argv[]) {

int stack = 111;
pid_t pid = fork();
if (pid == -1)

errExit("fork");
// -->Both parent and child come here !!!<--
if (pid == 0)

stack = stack * 4;
printf("\t%s stack %d\n", (pid==0) ? "(child)" : "(parent)", stack);

}

Operating systems Processes 35 / 64

Process creation (3/6)

Here is the output of the program:
user@localhost[~]$./example_fork

(parent) stack 111
(child) stack 444

user@localhost[~]$./example_fork
(child) stack 444
(parent) stack 111

The terminal output shows that:
I the child process gets its own copy of the parent’s variables;
I the execution of both parent and child processes continue

from the point where the fork() returned;

Operating systems Processes 36 / 64

Process creation (4/6)

Each process has a parent, namely the process that created it (see
previous slides about fork()).
#include <unistd.h>

// Always successfully returns PID of caller’s parent.
pid_t getppid(void);

The ancestor of all processes is the process init (PID=1). If a
child process becomes orphaned because its parent terminates,
then the child is “adopted" by the process init. The subsequent
calls to getppid() in the child return 1.

Operating systems Processes 37 / 64

Process creation (5/6)

#include <unistd.h>
int main (int argc, char *argv[]) {

pid_t pid = fork();
if (pid == -1) {

errExit("fork");
}
if (pid == 0) {

printf("(child) PID: %d PPID: %d\n", getpid(), getppid());
}
else {

printf("(parent) PID: %d PPID: %d\n", getpid(), getppid());
}
return 0;

}

Operating systems Processes 38 / 64

Process creation (6/6)

The execution of the previous example has three different
scenarios:
1. The child is executed after the parent, and the parent is not

terminated
(parent) PID: 402 PPID: 350
(child) PID: 403 PPID: 402

2. The child is executed before the parent process
(child) PID: 403 PPID: 402
(parent) PID: 402 PPID: 350

3. The child is executed after the termination of the parent
(parent) PID: 402 PPID: 350
(child) PID: 403 PPID: 1

Question: Whose the process ID 350 may belong to?

Operating systems Processes 39 / 64

Operations with processes

Monitoring

Operating systems Processes 40 / 64

Monitoring a child Process (1/12)

The wait system call waits for one of the children of the calling
process to terminate. (see waitpid for status input argument).
#include <sys/wait.h>

// Returns PID of terminated child, or -1 on error.
pid_t wait(int *status);

The following actions are performed by wait:
I If calling process have no unwaited-for children, then wait

returns -1 and errno is ECHILD.
I If no child has yet terminated, then wait blocks the calling

process until a child terminates. If a child has already
terminated, then wait returns immediately.

I If status is not NULL, information about the terminated child
is stored in the integer variable which status points to (next
slides).

Operating systems Processes 41 / 64

Monitoring a child Process (2/12)

for (int i = 1; i <= 3; ++i) {
// Fork and ignore fork failures.
if (fork() == 0) {

printf("Child %d sleeps %d seconds...\n", getpid(), i);
// Suspends the calling process for i seconds
sleep(i);
_exit(0);

}
}
pid_t child;
while ((child = wait(NULL)) != -1)

printf("wait() returned child %d\n", child);
if (errno != ECHILD)

printf("(wait) An unexpected error...\n");

Operating systems Processes 42 / 64

Monitoring a child Process (3/12)

Example output:
user@localhost[~]$./example_wait
child 75 sleeps 1 seconds
child 76 sleeps 2 seconds
child 77 sleeps 3 seconds
wait() returned child 75
wait() returned child 76
wait() returned child 77

Question: What happens to a child that terminates before
its parent has had the chance to perform a wait?

Operating systems Processes 43 / 64

Monitoring a child Process (4/12)

The kernel deals with this situation by turning the terminated child
into a zombie process. This means that most of the resources held
by the child are released back to the system. The only parts of the
terminated process still maintained are:
1. its process ID;
2. its termination status;
3. the resource usage statistics.

If the parent process terminates without calling wait, then the
zombie child process is “adopted” by the process init, which will
perform a wait system call some time later eventually.

Operating systems Processes 44 / 64

Monitoring a child Process (5/12)

The waitpid system call suspends execution of the calling process
until a child specified by pid argument has changed state.
#include <sys/wait.h>

// Returns a PID, 0, or -1 on error.
pid_t waitpid(pid_t pid, int *status, int options);

The status argument is the same of wait (see next slides). The
value of pid determines what child process we want to wait.
I pid ≥ 0, wait for the child having PID equals to pid.
I pid = 0, wait for any child in the same caller’s process group2.
I pid < -1, wait for any child in the process group |pid|.
I pid = -1, wait for any child.

2The processes can be organized in process group and sessions to support
shell job control in Linux (topic not included in Operating System program)

Operating systems Processes 45 / 64

Monitoring a child Process (6/12)

#include <sys/wait.h>

// Returns a PID, 0, or -1 on error.
pid_t waitpid(pid_t pid, int *status, int options);

The options argument of the waitpid system call is an OR of zero
or more of the following constants:
I WUNTRACED: return when a child is stopped by a signal or it

terminates.
I WCONTINUED: return when a child has been resumed by delivery

of a SIGCONT signal.
I WNOHANG: If no child specified by pid has yet changed state,

then return immediately, instead of blocking (i.e., perform a
“poll”). In this case, the return value of waitpid is 0.

I 0: then waitpid waits only for terminated children.

Operating systems Processes 46 / 64

Monitoring a child Process (7/12)

pid_t pid;
for (int i = 0; i < 3; ++i) {

pid = fork();
if (pid == 0) {

// Code executed by the child process...
_exit(0);

}
}
// The parent process only waits for the last created child
waitpid(pid, NULL, 0);

Operating systems Processes 47 / 64

Monitoring a child Process (7/12)

pid_t pid = fork();
if (pid == 0) {

// Code executed by the child process
} else {

// Waiting for a terminated/stopped | resumed child process.
waitpid(pid, NULL, WUNTRACED | WCONTINUED);

}

Operating systems Processes 48 / 64

Monitoring a child Process (9/12)

The status value set by waitpid, and wait, let us distinguish the
following events for a child process:
1. The child process terminated by calling _exit (or exit)

I The macro WIFEXITED returns true if the child exited normally.
I The macro WEXITSTATUS returns the exit status of the child

process.

exit status (0-255) 0Normal
Termination

15 8 7 0

waitpid(-1, &status, WUNTRACED | WCONTINUED);
if (WIFEXITED(status)) {

printf("Child exited, status=%d\n", WEXITSTATUS(status));
}

Operating systems Processes 49 / 64

Monitoring a child Process (10/12)

2. The child was terminated by the delivery of an unhanded
signal.
I The macro WIFSIGNALED returns true if the child was killed by

a signal.
I The macro WTERMSIG returns the number of the signal that

caused the process to terminate.

unused termination signalKilled
by Signal

15 8 7 6 0

waitpid(-1, &status, WUNTRACED | WCONTINUED);
if (WIFSIGNALED(status)) {

printf("Child killed by signal %d (%s)", WTERMSIG(status), strsignal(WTERMSIG(status)));
}

The strsignal(int sig) is a method of string.h which returns a
string describing the signal sig (see IPC part 1).

Operating systems Processes 50 / 64

Monitoring a child Process (11/12)

3. The child was stopped by a signal.
I The macro WIFSTOPPED returns true if the child process was

stopped by a signal.
I The macro WSTOPSIG(status) returns the number of the

signal that stopped the process.

stopping signal 0x7F
Stopped

by Signal

15 8 7 0

waitpid(-1, &status, WUNTRACED | WCONTINUED);
if (WIFSTOPPED(status)) {

printf("Child stopped by signal %d (%s)\n", WSTOPSIG(status), strsignal(WSTOPSIG(status)));
}

Operating systems Processes 51 / 64

Monitoring a child Process (12/12)

4. The child was resumed by a SIGCONT signal.
I The macro WIFCONTINUED returns true if the child was

resumed by delivery of SIGCONT.

0xFFFF
Continued
by Signal

15 0

waitpid(-1, &status, WUNTRACED | WCONTINUED);
if (WIFCONTINUED(status)) {

printf("child resumed by a SIGCONT signal\n");
}

or
waitpid(-1, &status, WCONTINUED);
printf("child resumed by a SIGCONT signal\n");

Operating systems Processes 52 / 64

Program execution (exec library functions)

Operating systems Processes 53 / 64

The exec Library Functions (1/2)

The exec family of functions replaces the current process image
with a new process image.
#include <unistd.h>
// None of the following returns on success, all return -1 on error.
int execl (const char *path, const char *arg, ...); // ... variadic functions
int execlp(const char *path, const char *arg, ...);
int execle(const char *path, const char *arg, ... , char *const envp[]);
int execv (const char *path, char *const argv[]);
int execvp(const char *path, char *const argv[]);
int execve(const char *path, char *const argv[], char *const envp[]);

Note: The list of arguments must be terminated by a NULL
pointer, and, since these are variadic functions, this pointer must
be cast (char *) NULL.

Operating systems Processes 54 / 64

The exec Library Functions (2/2)
function path arguments (argv) environment (envp)

execl pathname list caller’s environ
execlp filename list caller’s environ
execle pathname list array
execv pathname array caller’s environ
execvp filename array caller’s environ
execve pathname array array

I path: pathname means the absolute path to an executable.
While filename means the name of an executable, which is
sought in the list of directories specified in the PATH
environment variable.

I argv: a NULL-terminated list/array of pointers to string
defining the command line argument of the program.

I envp: a NULL-terminated array of pointers to string (name =
value) defining the environment of the program.

Operating systems Processes 55 / 64

Example (1/2)

Program: example.c
#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
int main(int argc, char *argv[])
{

printf("PID of example.c = %d\n", getpid());
char *args[] = {"Hello", "C", "Programming", NULL};
execv("./hello", args);
printf("Back to example.c");
return 0;

}

Operating systems Processes 56 / 64

Example (2/2)

Program: hello.c
#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
int main(int argc, char *argv[])
{

printf("We are in hello.c\n");
printf("PID of hello.c = %d\n", getpid());
return 0;

}

user@localhost[~]$ gcc -o example example.c
user@localhost[~]$ gcc -o hello hello.c
user@localhost[~]$./example

PID of example.c = 4733
We are in Hello.c
PID of hello.c = 4733

Operating systems Processes 57 / 64

execl(...) function

Using the program printenv to print the environment variable
HOME.
#include <unistd.h>
#include <stdio.h>
int main (int argc, char *argv[]) {

execl("/usr/bin/printenv", "printenv", "HOME", (char *)NULL);
perror("Execl");

}

path (pathname) :“/usr/bin/printenv”
argv (list) :“printenv", “HOME”, (char *)NULL
envp (-) :caller’s environment

user@localhost[~]$./example_exec
/home/user

Operating systems Processes 58 / 64

execlp(...) function

Using the program printenv to print the environment variable
HOME.
#include <unistd.h>
#include <stdio.h>
int main (int argc, char *argv[]) {

execlp("printenv", "printenv", "HOME", (char *)NULL);
perror("Execp");

}

path (filename) :“printenv”
argv (list) :“printenv", “HOME", (char *)NULL
envp (-) :caller’s environment

user@localhost[~]$./example_exec
/home/user

Operating systems Processes 59 / 64

execle(...) function

Using the program printenv to print the environment variable
HOME.
#include <unistd.h>
#include <stdio.h>
int main (int argc, char *argv[]) {

char *env[] = {"HOME=/home/pippo", (char *)NULL};
execle("/usr/bin/printenv", "printenv", "HOME", (char *)NULL, env);
perror("Execle");

}

path (pathname) :“/usr/bin/printenv”
argv (list) :“printenv", “HOME”, (char *)NULL
envp (array) :“HOME=/home/pippo”, (char *)NULL

user@localhost[~]$./example_exec
/home/pippo

Operating systems Processes 60 / 64

execv(...) function

Using the program printenv to print the environment variable
HOME.
#include <unistd.h>
#include <stdio.h>
int main (int argc, char *argv[]) {

char *arg[] = {"printenv", "HOME", (char *)NULL};
execv("/usr/bin/printenv", arg);
perror("Execv");

}

path (pathname) : “/usr/bin/printenv”
argv (array) : “printenv", “HOME”, (char *)NULL
envp (-) : caller’s environment

user@localhost[~]$./example_exec
/home/user

Operating systems Processes 61 / 64

execvp(...) function

Using the program printenv to print the environment variable
HOME.
#include <unistd.h>
#include <stdio.h>
int main (int argc, char *argv[]) {

char *arg[] = {"printenv", "HOME", (char *)NULL};
execvp("printenv", arg);
perror("Execvp");

}

path (filename) : “printenv”
argv (array) : “printenv", “HOME”, (char *)NULL
envp (-) : caller’s environment

user@localhost[~]$./example_exec
/home/user

Operating systems Processes 62 / 64

execve(...) function

Using the program printenv to print the environment variable
HOME.
#include <unistd.h>
#include <stdio.h>
int main (int argc, char *argv[]) {

char *arg[] = {"printenv", "HOME", (char *)NULL};
char *env[] = {"HOME=/home/pippo", (char *)NULL};
execve("/usr/bin/printenv", arg, env);
perror("Execve");

}

path (pathname) : “/usr/bin/printenv”
argv (array) : “printenv", “HOME”, (char *)NULL
envp (array) : “HOME=/home/pippo", (char *)NULL

user@localhost[~]$./example_exec
/home/pippo

Operating systems Processes 63 / 64

Final remarks on the exec library functions

What you should always keep in mind when you use an exec
function:
I The program input parameter points to an executable;
I List and array are always terminated with a NULL pointer

(char *)NULL;

I By convention, the first item of argv is the name of the
program;

I All exec functions return no result on success.

Operating systems Processes 64 / 64

	Attributes of a process
	Identifier
	Environment
	Working directory
	File descriptor table

	Operations with processes
	Termination
	Creation
	Monitoring

	Program execution (exec library functions)

