
Operating systems
Filesystem

Created by
Enrico Fraccaroli

enrico.fraccaroli@gmail.com

Operating systems Filesystem 1 / 46

mailto:enrico.fraccaroli@gmail.com

Table of Contents

1. File
1.1. Operations

1.1.1. open
1.1.2. read
1.1.3. write
1.1.4. lseek
1.1.5. close
1.1.6. unlink

1.2. Attributes
1.2.1. stat
1.2.2. access
1.2.3. chmod

2. Directory
2.1. Operations

2.1.1. mkdir
2.1.2. rmdir
2.1.3. opendir, closedir
2.1.4. readdir

Operating systems Filesystem 2 / 46

File

Operating systems Filesystem 3 / 46

File

Operations

Operating systems Filesystem 4 / 46

Open/Create a file (1/4)

The open system call either opens an existing file. Alternately, it
can first create and then open a new file.
#include <sys/stat.h>
#include <fcntl.h>

// Returns file descriptor on success, or -1 on error
int open(const char *pathname, int flags, .../*mode_t mode */);

If open succeeds, it returns a file descriptor that is used to refer to
the file in subsequent system calls.
The file to be opened/created is identified by the pathname
argument.

Operating systems Filesystem 5 / 46

Open/Create a file (2/4)

#include <sys/stat.h>
#include <fcntl.h>

// Returns file descriptor on success, or -1 on error
int open(const char *pathname, int flags, .../*mode_t mode */);

The flags argument is a bit mask of one or more of the following
constants that specifies the access mode for the file.

Flag Description

O_RDONLY Open for reading only
O_WRONLY Open for writing only
O_RDWR Open for reading and writing
O_TRUNC Truncate existing file to zero length
O_APPEND Writes are always appended to end of file
O_CREAT Create file if it doesn’t already exist
O_EXCL With O_CREAT, ensure that this call creates the file.

When a new file is created, then also the system call’s mode
argument is considered.

Operating systems Filesystem 6 / 46

Open/Create a file (3/4)

#include <sys/stat.h>
#include <fcntl.h>

// Returns file descriptor on success, or -1 on error
int open(const char *pathname, int flags, .../*mode_t mode */);

The mode argument is a bit mask of one or more of the following
constants that specifies the permissions for the new file.

Flag Description

S_IRWXU user has read, write, and execute permission
S_IRUSR user has read permission
S_IWUSR user has write permission
S_IXUSR user has execute permission
S_IRWXG group has read, write, and execute permission
S_IRGRP group has read permission
S_IWGRP group has write permission
S_IXGRP group has execute permission
S_IRWXO others has read, write, and execute permission
S_IROTH others has read permission
S_IWOTH others has write permission
S_IXOTH others has execute permission

Operating systems Filesystem 7 / 46

Be aware of the process’s umask! (1/2)

The user file-creation mask (umask) is a process attribute that
specifies which permission bits should always be turned off when
new files (directories, FIFOs, ...) are created by the process. In
most shells, the umask has the default value 022
(−−−−w−−w−).

The permissions assigned to a new file is: (mode & ∼umask)
Requested file perms: rw-rw---- (<- this is what we asked)
Process umask: ----w--w- (<- this is what we are denied)
Actual file perms: rw-r----- (<- So, this is what we get)

Operating systems Filesystem 8 / 46

Be aware of the process’s umask! (2/2)

You can manage the umask in a shell by using the command:
user@localhost[~]$ umask [-S] [expression]

You can view the current mask:
user@localhost[~]$ umask
022

You can set the current mask:
user@localhost[~]$ umask 022

You can also display the current mask using symbolic notation:
user@localhost[~]$ umask -S
u=rwx,g=rx,o=rx

Operating systems Filesystem 9 / 46

Open/Create a file (4/4)

Examples:
int fd;
// Open existing file for only writing.
fd = open("myfile", O_WRONLY);

// Open new or existing file for reading/writing, truncating
// to zero bytes; file permissions read+write only for owner.
fd = open("myfile1", O_RDWR | O_CREAT | O_TRUNC, S_IRUSR | S_IWUSR);

// Create and open a new file for reading/writing; file
// permissions read+write only for owner.
fd = open("myfile2", O_RDWR | O_CREAT | O_EXCL, S_IRUSR | S_IWUSR);

Operating systems Filesystem 10 / 46

Read from a file descriptor (1/3)

The read system call reads data from a file descriptor.
#include<unistd.h>

// Returns number of bytes read, or -1 on error
ssize_t read(int fd, void *buf, size_t count);

The count argument specifies the maximum number of bytes to
read from a file descriptor fd. The buf argument supplies the
address of a memory buffer into which the read input data is
stored.

Operating systems Filesystem 11 / 46

Read from a file descriptor (2/3)

Example: reading up to MAX_READ bytes from a file.
// Open existing file for reading.
int fd = open("myfile", O_RDONLY);
if (fd == -1)

errExit("open");

// A MAX_READ bytes buffer.
char buffer[MAX_READ + 1];

// Reading up to MAX_READ bytes from myfile.
ssize_t numRead = read(fd, buffer, MAX_READ);
if (numRead == -1)

errExit("read");

Note: with a file, the zero value returned by read means end-of-file
EOF

Operating systems Filesystem 12 / 46

Read from a file descriptor (3/3)

Example: reading up to MAX_READ bytes from a terminal!
// A MAX_READ bytes buffer.
char buffer[MAX_READ + 1];

// Reading up to MAX_READ bytes from STDIN.
ssize_t numRead = read(STDIN_FILENO, buffer, MAX_READ);
if (numRead == -1)

errExit("read");

buffer[numRead] = ’\0’;
printf("Input data: %s\n", buffer);

Note: with a terminal, read reads characters up to the next
newline (\n) character.

Operating systems Filesystem 13 / 46

Write to a file descriptor (1/3)

The write system call write data to a file descriptor.
#include <unistd.h>

// Returns number of bytes written, or -1 on error.
ssize_t write(int fd, void *buf, size_t count);

The count argument specifies the number of bytes of a buffer
pointed by buf that has to be written to a file descriptor referred
by fd.

Operating systems Filesystem 14 / 46

Write to a file descriptor (2/3)

Example: writing the string "Ciao Mondo" in a file
// Open existing file for writing.
int fd = open("myfile", O_WRONLY);
if (fd == -1)

errExit("open");

// A buffer collecting the string.
char buffer[] = "Ciao Mondo";

// Writing up to sizeof(buffer) bytes into myfile.
ssize_t numWrite = write(fd, buffer, sizeof(buffer));
if (numWrite != sizeof(buffer))

errExit("write");

Operating systems Filesystem 15 / 46

Write to a file descriptor (3/3)

Example: writing the string "Ciao Mondo" in a terminal.
// A buffer collecting a string.
char buffer[] = "Ciao Mondo";

// Writing up tp sizeof(buffer) bytes on STDOUT.
ssize_t numWrite = write(STDOUT_FILENO, buffer, sizeof(buffer));
if (numWrite != sizeof(buffer))

errExit("write");

Operating systems Filesystem 16 / 46

Adjust the offset location of a file (1/2)

For each open file, the kernel saves a file offset, namely the
location in the file at which the next read, or write, will start.
The lseek system call adjusts the offset location of a open file.
#include <unistd.h>

// Returns the resulting offset location, or -1 on error.
off_t lseek(int fd, off_t offset, int whence);

The fd argument speficies the file descriptor of the open file,
offset specifies a value in byte, meanwhile whence indicates the
base point from which offset is to be interpreted.

Operating systems Filesystem 17 / 46

Adjust the offset location of a file (2/2)

0 1 N-2 N-1 N N+1 N+2

SEEK_SET SEEK_CUR
whence value

SEEK_END

byte
number

File containing N bytes of data
Unwritten

bytes past EOF

// first byte of the file.
off_t current = lseek(fd1, 0, SEEK_SET);
// last byte of the file.
off_t current = lseek(fd2, -1, SEEK_END);
// 10th byte past the current offset location of the file.
off_t current = lseek(fd3, -10, SEEK_CUR);
// 10th byte after the current offset location of the file.
off_t current = lseek(fd4, 10, SEEK_CUR);

Note: For SEEK_SET, offset must be a positive value.

Operating systems Filesystem 18 / 46

Close a file descriptor

The close system call closes an open file descriptor.
#include <unistd.h>

// Returns 0 on success, or -1 on error.
int close(int fd);

Advice:
Even if the process’s file descriptors are automatically close when
the process terminates, it is usually good practice to close
unneeded file descriptors explicitly. This makes the code more
readable and reliable in the face of subsequent modifications.

Operating systems Filesystem 19 / 46

Remove a file

The unlink system call remove a link and, if that is the last link to
the file, also removes the file itself.
#include <unistd.h>

// Returns 0 on success, or -1 on error
int unlink(const char *pathname);

Warning :
unlink cannot remove a directory (see rmdir).

Operating systems Filesystem 20 / 46

Example

Example: Create, close and remove a file
// Create a new file named myFile.
int fd = open("myFile", O_CREAT | O_WRONLY);
// ... only writes as myFile is open in write-only
// Close the file descriptor fd
close(fd);
// Unlink (remove) myFile
unlink("myFile");

Operating systems Filesystem 21 / 46

File

Attributes

Operating systems Filesystem 22 / 46

Retrieve the attributes of a file (1/4)

The stat, lstat, and fstat system calls retrieve information
about a file.1

#include <sys/stat.h>

// Return 0 on success or -1 on error.
int stat(const char *pathname, struct stat *statbuf);
int lstat(const char *pathname, struct stat *statbuf);
int fstat(int fd, struct stat *statbuf);

These three system calls differ only in the way that the file is
specified:
I stat returns information about a named file;
I lstat returns information about a symbolic link;
I fstat is similar to stat, except that a file is referred to by a

file descriptor rather than its pathname.

1In Linux a directory is a file. The following system calls for file attributes
can also be applied for directories.

Operating systems Filesystem 23 / 46

Retrieve the attributes of a file (2/4)

All of these system calls return a stat structure in the buffer
pointed to by statbuf. This structure has the following form:
struct stat {

dev_t st_dev; // IDs of device on which file resides.
ino_t st_ino; // I-node number of file.
mode_t st_mode; // File type and permissions.
nlink_t st_nlink; // Number of (hard) links to file.
uid_t st_uid; // User ID of file owner.
gid_t st_gid; // Group ID of file owner.
dev_t st_rdev; // IDs for device special files.
off_t st_size; // Total file size (bytes).
blksize_t st_blksize; // Optimal block size for I/O (bytes).
blkcnt_t st_blocks; // Number of (512B) blocks allocated.
time_t st_atime; // Time of last file access.
time_t st_mtime; // Time of last file modification.
time_t st_ctime; // Time of last status change.

};

Operating systems Filesystem 24 / 46

Retrieve the attributes of a file (3/4)

Device IDs and i-node number: The st_dev field identifies the
device on which the file resides. The st_ino field contains the
i-node number of the file. The combination of st_dev and st_ino
uniquely identifies a file across all file systems.

File ownership: The st_uid and st_gid fields identify,
respectively, the owner (user ID) and group (group ID) to which
the file belongs.

Link count: The st_nlink field is the number of (hard) links to
the file.

File timestamps: The st_atime, st_mtime, and st_ctime fields
contain, respectively, the times of last file access, last file
modification, and last status change (i.e., last change to the file’s
i-node information) in time format of seconds.

Operating systems Filesystem 25 / 46

Retrieve the attributes of a file (4/4)

File size, blocks allocated, and optimal I/O block size

For regular files, the st_size field is the total size of the file in
bytes. For a symbolic link, this field contains the length (in bytes)
of the pathname pointed to by the link.

The st_blocks field indicates the number of blocks actually
allocated to the file in 512-byte block units (might be smaller than
expected from the corresponding st_size if the file contains holes).

The st_blksize is the optimal block size (in bytes) for I/O on files
on this file system. I/O in blocks smaller than this size is less
efficient. A typical value returned in st_blksize is 4096.

Operating systems Filesystem 26 / 46

File type and permissions (1/5)

The st_mode field is a bit mask serving the dual purpose of
identifying the file type and specifying the file permissions. The
bits of this field are laid as follow:

U G T R W X R W X R W X

File Type Permissions

User Group Other

Constant Test macro File type

S_IFREG S_ISREG() Regular file
S_IFDIR S_ISDIR() Directory
S_IFCHR S_ISCHR() Character device
S_IFBLK S_ISBLK() Block device
S_IFIFO S_ISFIFO() FIFO or pipe
S_IFSOCK S_ISSOCK() Socket
S_IFLNK S_ISLNK() Symbolic link

The file type can be extracted
from this field by ANDing (&)
with the constant S_IFMT, and
then comparing the result with
a range of constants.

As this is a common operation,
standard macros are provided.

Operating systems Filesystem 27 / 46

Example

U G T R W X R W X R W X

File Type Permissions

User Group Other

How to check if a file is a regular file
char pathname[] = "/tmp/file.txt";
struct stat statbuf;
// Getting the attributes of /tmp/file.txt
if (stat(pathname, &statbuf) == -1)

errExit("stat");

// Checking if /tmp/file.txt is a regular file
if ((statbuf.st_mode & S_IFMT) == S_IFREG)

printf("regular file!\n");

// Equivalently, checking if /tmp/file.txt is a
// regular file by S_ISREG macro.
if (S_ISREG(statbuf.st_mode))

printf("regular file!\n");

Operating systems Filesystem 28 / 46

File type and permissions (2/5)

U G T R W X R W X R W X

File Type Permissions

User Group Other

The bits labelled U, and G are applied for executables.
I set-user-ID: if it is set, then the effective user ID of the

process is made the same as the owner of the executable;
I set-group-ID: if it is set, then the effective group ID of the

process is made the same as the owner of the executable.
The bit labelled T, which is named Sticky-bit, acts as the
restricted deletion flag for directory.
Setting this bit on a directory means that an unprivileged process
can unlink (unlink(), rmdir()) and rename (rename()) files in the
directory only if it has write permission on the directory and owns
either the file or the directory.

Operating systems Filesystem 29 / 46

File type and permissions (3/5)

U G T R W X R W X R W X

File Type Permissions

User Group Other

The remaining 9 bits form the mask defining the permissions that
are granted to various categories of users accessing the file. The
file permissions mask divides the world into three categories:
I Owner : The permissions granted to the owner of the file.
I Group: The permissions granted to users who are members of

the file’s group.
I Other : The permissions granted to everyone else.

Three permissions may be granted to each user category:
I Read : The contents of the file may be read.
I Write: The contents of the file may be changed.
I Execute: The file may be executed.

Operating systems Filesystem 30 / 46

File type and permissions (4/5)

Directories have the same permission scheme as files. However, the
three permissions are interpreted differently:
I Read : The contents (i.e., the list of filenames) of the

directory may be listed
I Write: Files may be created in and removed from the directory
I Execute: Files within the directory may be accessed.

When accessing a file, execute permission is required on all of the
directories listed in the pathname. Example:
Suppose we want to read the file
/home/user1/secrets/passwords.txt, then we have to have the
execute permission for the directories:

/ home/ user1/ secrets/

Operating systems Filesystem 31 / 46

File type and permissions (5/5)

U G T R W X R W X R W X

File Type Permissions

User Group Other

The <sys/stat.h>

header file defines
constants that can be
ANDed (&) with
st_mode of the stat
structure, in order to
check whether
particular permission
bits are set.

Constant Octal value Permission bit

S_ISUID 04000 Set-user-ID
S_ISGID 02000 Set-group-ID
S_ISVTX 01000 Sticky
S_IRUSR 0400 User-read
S_IWUSR 0200 User-write
S_IXUSR 0100 User-execute
S_IRGRP 040 Group-read
S_IWGRP 020 Group-write
S_IXGRP 010 Group-execute
S_IROTH 04 Other-read
S_IWOTH 02 Other-write
S_IXOTH 01 Other-execute

Table: Constants for file permission bits

Operating systems Filesystem 32 / 46

Example

Displaying the user’s permission of a file:
char pathname[] = "/tmp/file.txt";
struct stat statbuf;

// Getting the attributes for the executable /tmp/a.out
if (stat(pathname, &statbuf) == -1)

errExit("stat");

// printing out the user’s permissions
printf("user’s permissions: %c%c%c\n",

(statbuf.st_mode & S_IRUSR)? ’r’ : ’-’,
(statbuf.st_mode & S_IWUSR)? ’w’ : ’-’,
(statbuf.st_mode & S_IXUSR)? ’x’ : ’-’);

Operating systems Filesystem 33 / 46

Check the accessibility of a file

The access system call checks the accessibility of the file specified
in pathname based on a process’s real user and group IDs.
#include <unistd.h>

// Returns 0 id all permissions are granted, otherwise -1
int access(const char *pathname, int mode):

If pathname is a symbolic link, access dereferences it. The mode
argument is a bit mask consisting of one or more of the following
constants:

Constant Description

F_OK Does the file exist?
R_OK Can the file be read?
W_OK Can the file be written?
X_OK Can the file be executed?

Operating systems Filesystem 34 / 46

Example

Checking the access to a file
char pathname[] = "/tmp/file.txt";

// Checking if /tmp/file.txt exists, can be read and
// written by the current process.
if (access(pathname, F_OK | R_OK | W_OK) == -1)

printf(" It looks like that I cannot read/write file.txt :(\n)")

Operating systems Filesystem 35 / 46

Change the permissions of a file

The chmod and fchmod system calls change the permissions of a file.
// All return 0 on success, or -1 on error
#include <sys/stat.h>

int chmod(const char *pathname, mode_t mode);

#define _BSD_SOURCE
#include <sys/stat.h>

int fchmod(int fd, mode_t mode);

The chmod system call changes the permissions of the file named in
pathname. The fchmod system call changes the permissions on the
file referred to by the open file descriptor fd.
The mode argument specifies the new permissions of the file by
ORing (|) the permission bits listed in Table 1

Operating systems Filesystem 36 / 46

Example

Changing the permission of a file
char pathname[] = "/tmp/file.txt";

struct stat sb;
if (stat(pathname, &sb) == -1)

errExit("stat");

// Owner-write on, other-read off, remaining bits unchanged.
mode_t mode = (sb.st_mode | S_IWUSR) & ~S_IROTH;

if (chmod(pathname, mode) == -1)
errExit("chmod");

Operating systems Filesystem 37 / 46

Directory

Operating systems Filesystem 38 / 46

Directory

Operations

Operating systems Filesystem 39 / 46

Create a new directory

The mkdir system call creates a new directory.
#include <sys/stat.h>

// Returns 0 on success, or -1 on error.
int mkdir(const char *pathname, mode_t mode);

The pathname argument specifies the pathname of the new
directory. This pathname may be relative or absolute. If a file with
this pathname already exists, then the call fails with the error
EEXIST.

The mode argument specifies the permissions for the new directory
(see chapter file system, system call open)

Operating systems Filesystem 40 / 46

Remove a new directory

The rmdir system call removes a directory.
#include <unistd.h>

// Returns 0 on success, or -1 on error.
int rmdir(const char *pathname);

In order for rmdir to succeed, the directory must be empty. If the
final component of pathname is a symbolic link, it is not
dereferenced; instead, the error ENOTDIR results.

Operating systems Filesystem 41 / 46

Example

Create and delete a new directory
// Create a new directory with name myDir.
int res = mkdir("myDir", S_IRUSR | S_IXUSR);
if (res == 0) {

printf("The directory myDir was created!\n");

// Remove the directory with name myDir.
res = rmdir("myDir");
if (res == 0)

printf("The directory myDir was removed!\n");
}

Operating systems Filesystem 42 / 46

Open and close a directory

The opendir and closedir system calls respectively open and
close a directory.
#include <sys/types.h>
#include <dirent.h>

// Returns directory stream handle, or NULL on error
DIR *opendir(const char *dirpath);

// Returns 0 on success, or -1 on error
int closedir(DIR *dirp);

Upon return from opendir, the so-called directory stream (namely,
DIR *) is positioned at the first entry in the directory list.

The closedir function closes the open directory stream referred to
by dirp, freeing the resources used by the stream.

Operating systems Filesystem 43 / 46

Read a directory (1/2)

The readdir system call reads the content of a directory.
#include <sys/types.h>
#include <dirent.h>

// Returns pointer to an allocated structure describing the
// next directory entry, or NULL on end-of-directory or error.
struct dirent *readdir(DIR *dirp);

Each call to readdir reads the next file/directory entry from the
directory stream referred to by dirp. Each entry is a struct defined
as follow:
struct dirent {

ino_t d_ino; // File i-node number.
unsigned char d_type; // Type of file.
char d_name[256]; // Null-terminated name of file.
//...

}

Operating systems Filesystem 44 / 46

Read a directory (2/2)

The C library defines the following macro constants for the value
returned in d_type:

Constant File type

DT_BLK block device
DT_CHR character device
DT_DIR directory
DT_FIFO named pipe (FIFO)
DT_LNK symbolic link
DT_REG regular file
DT_SOCK UNIX socket

Operating systems Filesystem 45 / 46

Example

Displaying only the regular files in a directory
DIR *dp = opendir("myDir");
if (dp == NULL) return -1;

errno = 0;
struct dirent *dentry;
// Iterate until NULL is returned as a result.
while ((dentry = readdir(dp)) != NULL) {

if (dentry->d_type == DT_REG)
printf("Regular file: %s\n", dentry->d_name);

errno = 0;
}
// NULL is returned on error, and when the end-of-directory is reached!
if (errno != 0)

printf("Error while reading dir.\n");
closedir(dp);

Operating systems Filesystem 46 / 46

	File
	Operations
	Attributes

	Directory
	Operations

