
Operating systems
Fundamental concepts

Created by
Enrico Fraccaroli

enrico.fraccaroli@gmail.com

Operating systems Fundamental concepts 1 / 37

mailto:enrico.fraccaroli@gmail.com

Table of Contents

1. Processes and Programs
1.1. Memory Layout of a Process
1.2. File descriptor table (overview)

2. System calls
2.1. System call execution
2.2. Handling system call errors
2.3. strace command

3. Kernel data types

4. Manual pages

Operating systems Fundamental concepts 2 / 37

Processes and Programs

Operating systems Fundamental concepts 3 / 37

Processes and Programs

Process
A process is an instance of an executing program.

Program
A program is a binary file containing a set of information that
describes how to construct a process at run time
From the Kernel’s point of view, a process consists of:
I user-space memory containing program code,
I the variables used by that code, and
I a set of kernel data structures that maintain information

about the process’s state (e.g. page tables, table of open files,
signals to be delivered, process resource usage and limits, . . .)

Operating systems Fundamental concepts 4 / 37

Processes and Programs

Memory Layout of a Process

Operating systems Fundamental concepts 5 / 37

Memory Layout of a Process (1/5)

Typical memory (RAM) layout of a process on Linux/x86-32

I Program code: read-only segment
containing machine- language
instructions (text)

I Initialized data: segment
containing initialized global and
static variables (data)

I Uninitialized data: segment
containing not initialized global
and static variables (bss)

I Heap: segment containing
dynamically allocated variables ↑

I Stack: segment containing for
each called function its arguments
and locally declared variables ↓

argv, environ

Stack
↓

Unallocated
Memory

↑
Heap

Uninitialized data
(bss)

Initialized data
(data)

Program code
(text)

0xC0000000

Top of
Stack

Program
break

0x08048000

Operating systems Fundamental concepts 6 / 37

Memory Layout of a Process (2/5)

#include <stdlib.h>
// Declared global variables
char buffer[10]; // <- (bss)
int primes [] = {2, 3, 5, 7}; // <- (data)
// Function implementation
void method(int *a) { // <- (stack)

int i; // <- (stack)
for (i = 0; i < 10; ++i)

a[i] = i;
}
// Program entry point
int main (int argc, char *argv[]) { // <- (stack)

static int key = 123; // <- (data)
int *p; // <- (stack)
p = malloc(10 * sizeof(int)); // <- (heap)
method(p);
free(p);
return 0;

}

argv, environ

Stack
↓

Unallocated
Memory

↑
Heap

Uninitialized data
(bss)

Initialized data
(data)

Program code
(text)

0xC0000000

Top of
Stack

Program
break

0x08048000

Operating systems Fundamental concepts 7 / 37

Memory Layout of a Process (3/5)

You can query segments size of the
previous code, by means of the size
command:
user@localhost[~]$ size main

text data bss dec hex filename
1695 628 24 2347 92b main

argv, environ

Stack
↓

Unallocated
Memory

↑
Heap

Uninitialized data
(bss)

Initialized data
(data)

Program code
(text)

0xC0000000

Top of
Stack

Program
break

0x08048000

Operating systems Fundamental concepts 8 / 37

Memory Layout of a Process (4/5)

//Code-1 Example
int main (int argc, char *argv[]) {

char *string = "ciao";
string[0] = ‘C‘;
printf("%s\n", string);
return 0;

}
// Code-2 Example
int main (int argc, char *argv[]) {

char string[] = "ciao";
string[0] = ‘C‘;
printf("%s\n", string);
return 0;

}

Why do we have a Segmentation fault
error?

argv, environ

Stack
↓

Unallocated
Memory

↑
Heap

Uninitialized data
(bss)

Initialized data
(data)

Program code
(text)

0xC0000000

Top of
Stack

Program
break

0x08048000

Operating systems Fundamental concepts 9 / 37

Memory Layout of a Process (5/5)

I Code-1 Example
int main (int argc, char *argv[]) {

char *string = "ciao";
string[0] = ‘C‘;
printf("%s\n", string);
return 0;

}

I Code-2 Example
int main (int argc, char *argv[]) {

char string[] = "ciao";
string[0] = ‘C‘;
printf("%s\n", string);
return 0;

}

Why do we have a Segmentation fault
error with Code-1? (advice: text
segment)

argv, environ

Stack
↓

Unallocated
Memory

↑
Heap

Uninitialized data
(bss)

Initialized data
(data)

Program code
(text)

0xC0000000

Top of
Stack

Program
break

0x08048000

Operating systems Fundamental concepts 10 / 37

https://www.eskimo.com/~scs/cclass/krnotes/sx8e.html
https://www.eskimo.com/~scs/cclass/krnotes/sx8e.html

Processes and Programs

File descriptor table (overview)

Operating systems Fundamental concepts 11 / 37

File descriptor table (overview)

For each generated process the Kernel maintains a file descriptor
table. Each entry of the table is a file descriptor, namely a positive
number representing an input/output resource opened by the
process (e.g. files, pipes, sockets, . . .).

By convention, three file descriptors are always present in a new
process:

File descriptor Purpose POSIX name

0 standard input STDIN_FILENO
1 standard output STDOUT_FILENO
2 standard error STDERR_FILENO

Further details about file descriptor table are reported in File
system chapter.

Operating systems Fundamental concepts 12 / 37

System calls

Operating systems Fundamental concepts 13 / 37

System calls (1/2)

Typical operating system architecture
Application 1 Application 2 ... Application N

System Call Interface

Kernel

Device Drivers

Peripheral 1 Peripheral 2 ... Peripheral N

User Space

Kernel Space

Hardware

A system call is a controlled entry point into the Kernel, allowing a
process to request a service. For example, the services provided by
Kernel include: creation of a new process, execution of I/O
operation, creation of a pipe for interprocess communication

Operating systems Fundamental concepts 14 / 37

https://linux-kernel-labs.github.io/refs/heads/master/lectures/intro.html

System calls (2/2)

The syscalls(2) manual page lists the available Linux system calls.
Technical details are available for each system call through the
man(2) command (e.g. man 2 open)

From a programming point of view, invoking a system call looks
much like calling a C function. However, the following steps are
performed behind a system call execution.

(For more information read The Linux Kernel)

Operating systems Fundamental concepts 15 / 37

https://linux-kernel-labs.github.io/refs/heads/master/index.html

System calls

System call execution

Operating systems Fundamental concepts 16 / 37

System call execution (1/4)

User Mode
Kernel Mode

Application program
(application.c)

glibc wrapper function
(sysdeps/unix/sysv/linux/execve.c)

Trap handler
(arch/x86/kernel/entry_32.S)

System Call service routine
(arch/x86/kernel/process.c)

execve(path, argv, envp);
void execve(path, argv, envp) {

...
int 0x80 (arguments:

__NR_execve, path, argv, envp)
...
return;

}

system_call:
...
call sys_call_table[__NR_execve]
...

void sys_execve() {
...
...
return error;

}

Operating systems Fundamental concepts 17 / 37

System call execution (2/4)

1. The application makes a system call by calling a wrapper
function in the C library.

2. The wrapper function: copies the system call arguments from
the stack to specific CPU registers, copies the system call
number into the %eax CPU register 1. Finally, the wrapper
makes the CPU switch from user mode to kernel mode (e.g.
int 0x80 software interrupt).

1The set of system call is fixed. Each system call is identified by a name in C
library, and by a unique number in the Kernel! The execve() system call has
the
number 11 (__NR_execve) in Linux/x86-32.

Operating systems Fundamental concepts 18 / 37

System call execution (3/4)

3. the Kernel executes system_call() routine which: saves the
register values onto the kernel stack, checks the validity of the
system call number, and invokes the system call service
routine2

4. The service routine performs the required task. Finally, a
result status is returned to the system_call().

2The sys_call_table vector contains a pointer to the system call service
routine.
The 11-th entry of sys_call_table contains a function pointer to the
sys_execve()
service routine.

Operating systems Fundamental concepts 19 / 37

System call execution (4/4)

5. The system_call() routine restores the CPU register values
from the kernel stack and place the result status of the
executed service routine on the stack. Simultaneously it
switches the CPU from kernel mode to user mode and returns
to the C wrapper function.

6. If the return value of the system call service routine indicated
an error, then the wrapper function sets the global variable
errno using this value. Finally, the wrapper function returns
to the caller an integer value indicating the success or failure
of the system call.

By convention, the negative number -1 (or a NULL pointer),
indicate an error to the calling application program.

Operating systems Fundamental concepts 20 / 37

System calls

Handling system call errors

Operating systems Fundamental concepts 21 / 37

Handling system call errors (1/7)

The section ERRORS in the manual page of each system call
documents the possible return value(s) indicating an error. Usually,
a system call notifies an error by returning –1 (or a NULL pointer)
as a result.

When a system call fails, the global integer variable errno is set to
a positive value that identifies the occurred error. Including the
<errno.h> header file provides a declaration of errno, as well as a
set of constants for the various error numbers.

Operating systems Fundamental concepts 22 / 37

Handling system call errors (2/7)

Simple example of the use of errno3 to diagnose a system call error
#include <errno.h>
...
// system call to open a file
fd = open(pathname, flags, mode);
// BEGIN code handling errors.
if (fd == -1) {

if (errno == EACCES) {
// Handling not allowed access to the file

} else {
// Some other error occurred

}
}
// END code handling errors
...

3Linux system errors (link)
Operating systems Fundamental concepts 23 / 37

https://www-numi.fnal.gov/offline_software/srt_public_context/WebDocs/Errors/unix_system_errors.html

Handling system call errors (3/7)

A few system calls (e.g., getpriority()) can return –1 on success.
To determine whether an error occurs with such calls, we set errno
to 0 before calling the system call. If the call returns –1 and errno
is nonzero, then an error occurred.
#include <sys/resource.h>
...
// Reset the errno variable to 0
errno = 0;
// System call getpriority gets the nice value of a process
nice = getpriority(which, who);
if ((nice == -1) && (errno != 0)) {

// Handling getpriority errors
}
...

Operating systems Fundamental concepts 24 / 37

Handling system call errors (4/7)

The perror() function prints on standard error the string msg
followed by a message that describes last error encountered during
the last system call.
#include <stdio.h>

void perror(const char *msg);

Operating systems Fundamental concepts 25 / 37

Handling system call errors (5/7)

Simple example of the use of perror to print a message describing
the occurred error.
#include <stdio.h>
...
// System call to open a file.
fd = open(pathname, flags, mode);
if (fd == -1) {

perror("<Open>");
// System call to kill the current process.
exit(EXIT_FAILURE);

}
...

Example output:
<Open>: No such file or directory

Operating systems Fundamental concepts 26 / 37

Handling system call errors (6/7)

The strerror() function returns the error string corresponding to
the error number given in its errnum argument.
#include <string.h>

char *strerror(int errnum);

The string returned by strerror() could be overwritten by
subsequent calls to strerror(). If errnum is a unrecognized error
number, strerror() returns a string of the form Unknown error
nun.4.

4On some other implementations, strerror() returns NULL when
errnum is unrecognized

Operating systems Fundamental concepts 27 / 37

Handling system call errors (7/7)

Simple example of the use of strerror to print a message
describing the occurred error.
#include <stdio.h>
...
// System call to open a file
fd = open(path, flags, mode);
if (fd == -1) {

printf("Error opening (%s):\n\t%s\n", path, strerror(errno));
// System call to kill the current process
exit(EXIT_FAILURE);

}
...

Example output:
Error opening (myFile.txt):

No such file or directory

Operating systems Fundamental concepts 28 / 37

Function errExit

Throughout these slides the function errExit is used as a short
cut to print a message and terminate a process. The following is
its C implementation:

void errExit(const char *msg) {
perror(msg);
exit(EXIT_FAILURE);

}

N.B.:
The function errExit is not a default/standardized C function. In
order to replicated the examples of these slides you must first
define it!

Operating systems Fundamental concepts 29 / 37

System calls

strace command

Operating systems Fundamental concepts 30 / 37

strace command

The strace system command let us find out what system calls a
process is using. In its simplest form, strace is used as follows:
user@localhost[~]$ strace command arg...

Here is an example:
user@localhost[~]$ strace ls /tmp
execve("/bin/ls", ["ls", "/tmp"], [/* 25 vars */]) = 0
brk(NULL) = 0x1461000
access("/etc/ld.so.nohwcap", F_OK) = -1 ENOENT (No such file or directory)
access("/etc/ld.so.preload", R_OK) = -1 ENOENT (No such file or directory)

open("/etc/1d.so.cache", O RDONLY|O_CLOEXEC) = 3

fstat(3, {st_mode=S_IFREG|0644, st_size=67920, ...}) = 0
mmap(NULL, 67920, PROT_READ, MAP_PRIVATE, 3, 0) = 0x7f0ef7acf000

close(3) = 0

...

Operating systems Fundamental concepts 31 / 37

Kernel data types

Operating systems Fundamental concepts 32 / 37

Kernel data types (1/2)

Even on a single Linux implementation, the data types used to
represent information may differ between kernel releases. Example:
On Linux ≤2.2, user and group IDs were represented by 16 bits,
meanwhile on Linux ≥2.4 and later, they are represented by 32
bits.

To avoid portability problems various standard system data types
were defined. Each of these types is defined using the C typedef
feature. Most of the standard system data types have names
ending in _t. Many of them are declared in the header file
<sys/types.h>

Example:
pid_t data type is intended for representing process IDs. On
Linux/x86-32 this type is defined as typedef int pid_t;

Operating systems Fundamental concepts 33 / 37

Kernel data types (2/2)

The following table lists some of the system data types that we’ll
encounter in this course.

Data type Type requirement Description

ssize_t signed integer byte count or error indication
size_t unsigned integer byte count
off_t signed integer file offset

mode_t integer file permission and type
pid_t signed integer process, or process group, or session ID
uid_t integer numeric user identifier
gid_t integer numeric group identifier
key_t arithmetic type System V IPC type
time_t integer or real floating time in seconds since Epoch

msgqnum_t unsigned integer counts of messages in a queue
msglen_t unsigned integer number of allowed byte for a msg
shmatt_t unsigned integer counts attaches fo a shared mem.

Operating systems Fundamental concepts 34 / 37

Manual pages

Operating systems Fundamental concepts 35 / 37

Manual pages (1/2)

The manual pages are a set of pages that explain every command
available on your system including what they do, the specifics of
how you run them and what command line arguments they accept.
Manual pages are accessible via the man command. Example:

man <command>

A manual page is usually divided into numbered sections:
1. User commands
2. System calls documentation
3. Library functions documentation provided by the standard C

library
4. Devices documents details
5. File Formats and Conventions

Operating systems Fundamental concepts 36 / 37

Manual pages (2/2)

How to get the documentation of...
I cd bash command: man cd (or man 1 cd)
I open system call: man 2 open

I strlen C function: man 3 strlen

I hard disk devices: man 4 hd

I file format fstab: man 5 fstab

Utility:
The command man -k <str> search the short descriptions and
manual page names for the keyword str as regular expression.

Operating systems Fundamental concepts 37 / 37

	Processes and Programs
	Memory Layout of a Process
	File descriptor table (overview)

	System calls
	System call execution
	Handling system call errors
	strace command

	Kernel data types
	Manual pages

